首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin is a widely known natural phytochemical from plant Curcuma longa. In recent years, curcumin has received increasing attention because of its capability to induce apoptosis and inhibit cell proliferation as well as its anti-inflammatory properties in different cancer cells. However, the therapeutic benefits of curcumin are severely hampered due to its particularly low absorption via trans-dermal or oral bioavailability. Phototherapy with visible light is gaining more and more support in dermatological therapy. Red light is part of the visible light spectrum, which is able to deeply penetrate the skin to about 6 mm, and directly affect the fibroblast of the skin dermis. Blue light is UV-free irradiation which is fit for treating chronic inflammation diseases. In this study, we show that curcumin at low concentrations (1.25–3.12 μM) has a strong anti-proliferative effect on TNF-α-induced psoriasis-like inflammation when applied in combination with light-emitting-diode devices. The treatment was especially effective when LED blue light at 405 nm was combined with red light at 630 or 660 nm, which markedly amplified the anti-proliferative and apoptosis-inducing effects of curcumin. The experimental results demonstrated that this treatment reduced the viability of human skin keratinocytes, decreased cell proliferation, induced apoptosis, inhibited NF-κB activity and activated caspase-8 and caspase-9 while preserving the cell membrane integrity. Moreover, the combined treatment also down-regulated the phosphorylation level of Akt and ERK. Taken together, our results indicated that the combination of curcumin with LED blue light united red light irradiation can attain a higher efficiency of regulating proliferation and apoptosis in skin keratinocytes.  相似文献   

2.
Fatty acid synthase (FASN), the enzyme responsible for de novo synthesis of fatty acids, has been shown to be deregulated in several cancers, including epithelial ovarian carcinoma (EOC). In this study, we investigated the function of the FASN signaling pathway in a large series of Middle Eastern EOC patient samples, a panel of cell lines and nude mouse model. Using immunohistochemistry, we detected overexpression of FASN in 75.5% (114/151) of the tumor samples. Overexpression of FASN was associated significantly with tumor proliferative marker Ki-67 (P = 0.0009), activated AKT (P = 0.0117) and XIAP (P = 0.0046). Treatment of EOC cell lines with C-75, a selective inhibitor of FASN, caused inhibition of EOC cell viability via induction of apoptosis. Inhibition of FASN by C-75 led apoptosis via the mitochondrial pathway. FASN inhibition caused downregulation of activated AKT and its downstream targets. In addition, inhibition by FASN siRNA caused downregulation of FASN and activation of caspases, suggesting the role of FASN in C-75 mediated apoptosis. Furthermore, treatment of EOC cells with subtoxic doses of C-75 augmented the effect of cisplatin-mediated induction of apoptosis. Finally, treatment of EOC cell line xenografts with a combination of C-75 and cisplatin resulted in growth inhibition of tumors in nude mice through downregulation of FASN and activation of caspases. Altogether, our results show overexpression of FASN in Middle Eastern EOC, suggesting that FASN may be a potential therapeutic target in a subset of EOC, alone or in combination with other conventional chemotherapeutic agents.  相似文献   

3.
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality. Curcumin is involved in various biological pathways leading to inhibition of NSCLC growth. The purpose of this study was to evaluate the effect of curcumin on expression of nuclear factor κB-related proteins in vitro and in vivo and on growth and metastasis in an intralung tumor mouse model.H1975 NSCLC cells were treated with curcumin (0–50 μM) alone, or combined with gemcitabine or cisplatin. The effects of curcumin were evaluated in cell cultures and in vivo, using ectopic and orthotopic lung tumor mouse models. Twenty mice were randomly selected into two equal groups, one that received AIN-076 control diet and one that received the same food but with the addition of 0.6% curcumin 14 days prior to cell implantation and until the end of the experiment. To generate orthotopic tumor, lung cancer cells in Matrigel were injected percutaneously into the left lung of CD-1 nude mice. Western blot analysis showed that the expressions of IkB, nuclear p65, cyclooxygenase 2 (COX-2) and p-ERK1/2 were down-regulated by curcumin in vitro. Curcumin potentiated the gemcitabine- or cisplatin-mediated antitumor effects. Curcumin reduced COX-2 expression in subcutaneous tumors in vivo and caused a 36% decrease in weight of intralung tumors (P=.048) accompanied by a significant survival rate increase (hazard ratio=2.728, P=.036). Curcumin inhibition of COX-2, p65 expression and ERK1/2 activity in NSCLC cells was associated with decreased survival and increased induction of apoptosis. Curcumin significantly reduced tumor growth of orthotopic human NSCLC xenografts and increased survival of treated athymic mice. To evaluate the role of curcumin in chemoprevention and treatment of NSCLC, further clinical trials are required.  相似文献   

4.
Lee JY  Lee YM  Chang GC  Yu SL  Hsieh WY  Chen JJ  Chen HW  Yang PC 《PloS one》2011,6(8):e23756

Background

Non-small cell lung cancer (NSCLC) patients with L858R or exon 19 deletion mutations in epidermal growth factor receptor (EGFR) have good responses to the tyrosine kinase inhibitor (TKI), gefitinib. However, patients with wild-type EGFR and acquired mutation in EGFR T790M are resistant to gefitinib treatment. Here, we showed that curcumin can improve the efficiency of gefitinib in the resistant NSCLC cells both in vitro and in vivo models.

Methods/Principal Findings

After screening 598 herbal and natural compounds, we found curcumin could inhibit cell proliferation in different gefitinib-resistant NSCLC cell lines; concentration-dependently down-regulate EGFR phosphorylation through promoting EGFR degradation in NSCLC cell lines with wild-type EGFR or T790M EGFR. In addition, the anti-tumor activity of gefitinib was potentiated via curcumin through blocking EGFR activation and inducing apoptosis in gefitinib-resistant NSCLC cell lines; also the combined treatment with curcumin and gefitinib exhibited significant inhibition in the CL1-5, A549 and H1975 xenografts tumor growth in SCID mice through reducing EGFR, c-MET, cyclin D1 expression, and inducing apoptosis activation through caspases-8, 9 and PARP. Interestingly, we observed that the combined treatment group represented better survival rate and less intestinal mucosal damage compare to gefitinib-alone therapy. We showed that curcumin attenuated the gefitinib-induced cell proliferation inhibition and apoptosis through altering p38 mitogen-activated protein kinase (MAPK) activation in intestinal epithelia cell.

Conclusions/Significance

Curcumin potentiates antitumor activity of gefitinib in cell lines and xenograft mice model of NSCLC through inhibition of proliferation, EGFR phosphorylation, and induction EGFR ubiquitination and apoptosis. In addition, curcumin attenuates gefitinib-induced gastrointestinal adverse effects via altering p38 activation. These findings provide a novel treatment strategy that curcumin as an adjuvant to increase the spectrum of the usage of gefitinib and overcome the gefitinib inefficiency in NSCLC patients.  相似文献   

5.
In this study, we investigated the ability of curcumin alone or in combination with GLUT1 siRNA to radiosensitize laryngeal carcinoma (LC) through the induction of autophagy. Protein levels in tumour tissues and LC cells were measured by immunohistochemistry and Western blotting. In vitro, cell proliferation, colony formation assays, cell death and autophagy were detected. A nude mouse xenograft model was established through the injection of Tu212 cells. We found that GLUT1 was highly expressed and negatively associated with autophagy-related proteins in LC and that curcumin suppressed radiation-mediated GLUT1 overexpression in Tu212 cells. Treatment with curcumin, GLUT1 siRNA, or the combination of the two promoted autophagy. Inhibition of autophagy using 6-amino-3-methypourine (3-MA) promoted apoptosis after irradiation or treatment of cells with curcumin and GLUT1 siRNA. 3-MA inhibited curcumin and GLUT1 siRNA-mediated non-apoptotic programmed cell death. The combination of curcumin, GLUT1 siRNA and 3-MA provided the strongest sensitization in vivo. We also found that autophagy induction after curcumin or GLUT1 siRNA treatment implicated in the AMP-activated protein kinase-mTOR-serine/threonine-protein kinase-Beclin1 signalling pathway. Irradiation primarily caused apoptosis, and when combined with curcumin and GLUT1 siRNA treatment, the increased radiosensitivity of LC occurred through the concurrent induction of apoptosis and autophagy.  相似文献   

6.
Curcumin, a natural compound extracted from rhizomes of curcuma Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor and anti-oxidative properties. However, the mechanism of action of the compound remains poorly understood. In this report, we have analyzed the effects of curcumin on the cell proliferation of Burkitt’s lymphoma Raji cells. The results demonstrated that curcumin could effectively inhibit the growth of Raji cells in a dose- and time-dependent manner. Further studies indicated that curcumin treatment resulted in apoptosis of cells. Biochemical analysis showed that the expression of Bax, Bid and cytochrome C were up-regulated, while the expression of oncogene c-Myc was down regulated after curcumin treatment. Furthermore, poly (ADP-ribose) polymerase (PARP) cleavage was induced by the compound. Interestingly, the antiapoptotic Bcl-2 expression was not significantly changed in Raji cells after curcumin treatment. These results suggested that the mechanism of action of curcumin was to induce mitochondrial damage and therefore led to Raji cell apoptosis. We further investigated the in vivo effects of curcumin on the growth of xenograft tumors in nude mice. The results showed that curcumin could effectively inhibit tumor growth in the xenograft mouse model. The overall results showed that curcumin could suppress the growth of Burkitt’s lymphoma cells in both in vitro and in vitro systems.  相似文献   

7.
The integrity of the human epidermis is guaranteed by a regulated balance of proliferation, differentiation, and physiologic cell death of its main cellular constituent, the epidermal keratinocyte. Physiologic cell death is known as apoptosis and has been recognized as an active regulatory mechanism, complementary to, but functionally opposite of, proliferation. The regulators of the delicate balance between cell death and proliferation are only partially understood in human keratinocytes. Transforming growth factor-α (TGF-α) has been identified as a positive regulator of proliferation and growth, while tumor necrosis factor-α (TNF-α) induces apoptosis. Both mediators are thought to influence epidermal keratinocytes under various physiological and pathophysiological conditions. In the current study we have begun to investigate potential regulatory interactions between these two mediators in the human keratinocyte cell line HaCaT. We have found that, when the HaCaT cells were sensitized by the translation inhibitor cycloheximide, TNF-α induced apoptosis, as evidenced by nuclear disintegration, DNA fragmentation (“DNA laddering”), and the appearance of soluble DNA/histone complexes. Moreover, we found that the induction of apoptosis was reduced by preincubation of the cells with TGF-α. The protective effect of TGF-α was abrogated by translation inhibition, indicating that it depended onde novoprotein synthesis. Moreover, the protective effect was not accompanied by a reduced surface expression of TNF receptor molecules. We postulate that TNF-α-induced apoptosis in HaCaT cells is counteracted by constitutively produced suppressors of apoptosis, the synthesis of which can be downregulated by inhibition of translation and upregulated by the cytokine TGF-α.  相似文献   

8.
目的:研究BCRABL和VEGF反义寡核苷酸联用对K562细胞株的作用及其相互作用的影响。方法:设计针对bcr3/abl2和VEGF的反义寡核苷酸(ASODNs),应用脂质体Oligofectamine作为转染载体。在转染后72h进行台盼蓝染色细胞计数;建立裸鼠K562移植瘤动物模型,瘤内注射ASODNs,观察肿瘤体积生长变化,组织学检测肿瘤血管密度和肿瘤细胞凋亡情况。结果:转染后72h,各实验组与空白组相比,细胞增殖抑制率分别为13.47%(ASOB3/A2组),12.79%(ASOVEGF组)和41.55%(半量联合治疗组)。经过4次治疗后,与对照组相比,肿瘤生长抑制率分别为23.18%(ASOB3/A2组),17.28%(ASOVEGF组)和57.83%(半量联合治疗组)。联合治疗组肿瘤生长速率显著低于单一治疗组,伴随明显的肿瘤细胞凋亡增加和肿瘤血管密度减少。结论:双基因反义寡核苷酸联合应用协同抑制K562细胞增殖,抗肿瘤作用明显优于单一治疗组,可为CML基因治疗提供一项新策略。  相似文献   

9.
Growth of human breast adenocarcinoma MCF-7 cells as a tumor on nude mice is dependent on estrogen. It has been shown that estrogen withdrawal (EW) induces a partial regression of the tumor via an inhibition of cell proliferation and an induction of apoptosis. We investigated in this in vivo model the underlying molecular mechanisms of the hormone-dependent regulation of cell cycle machinery and apoptosis. We found that, 2 days after EW, the tumor protein levels of p21 rose, whereas those of Rb proteins decreased in parallel with the decrease in the proportion of tumor cells in S phase and the increase of the tumor apoptotic index. Between 3 and 7 days after EW, apoptosis was inhibited and tumor proliferation returned to the control value. There was a concomitant decline in p21 and an elevation of Rb tumor protein content. Slight variations of cyclin D protein level were observed in MCF-7 tumors over the time course following EW treatment. Bcl-2 overexpression not only inhibited apoptosis induced by EW but also modulated hormone-dependent cell cycle regulation. First, the analysis of phosphorylation status of Rb protein and the measurement of the proportion of tumor cells in S phase indicated that Bcl-2 overexpression results in a decrease of DNA synthesis induced by estradiol. Furthermore, after EW, Bcl-2-induced inhibition of hormone-dependent apoptosis was associated with an inhibition of Rb protein downregulation, a sustained level of p21 protein, and a prolonged inhibition of cell cycle progression. These results suggest that, in human hormone-dependent breast cancers, cross-talk exists between the signaling pathways which lead to regulation of cell cycle progression and apoptosis.  相似文献   

10.
目的:比较国产重组C225与国外已上市同类药Erbitux是否具有相似或更好的与表皮生长因子受体(EGFR)的竞争结合力及体内外抗肿瘤药效。方法:构建EGFR高表达的人结肠癌HT-29细胞裸鼠移植瘤模型,观察静脉注射国产重组C225对肿瘤生长的抑制作用,并评价其对肿瘤细胞诱导细胞凋亡和增殖的抑制作用。结果:HT-29结肠癌裸鼠移植瘤模型对单独应用的国产C225或Erbitux敏感性都很差,对单独应用CPT-11的敏感性也较差,但当国产C225和CPT-11联合应用后抗肿瘤作用大大提高,2次实验的相对肿瘤增殖率T/C(%)分别为20.0%(P0.05)和19.0%(P0.05)。对人结肠癌HT-29细胞抑制增殖和诱导凋亡作用的影响研究结果显示,国产C225与CPT-11联合疗法的凋亡指数/增生指数比,是单独使用国产C225或单独使用CPT-11的4.3倍以上。结论:在人结肠癌HT-29裸鼠移植瘤模型中联合应用国产C225和CPT-11可以抑制EGFR,对肿瘤细胞有很好的诱导凋亡作用和抑制增殖作用,这种联合疗法对于CPT-11耐受的结直肠癌具有很好疗效。  相似文献   

11.
姜黄素和紫杉醇联用对前列腺癌PC3裸鼠移植瘤作用的研究   总被引:2,自引:0,他引:2  
目的:探讨姜黄素和半量紫杉醇联用对前列腺癌PC3裸鼠移植瘤生长增殖的影响及其机制。方法:构建人雄激素非依赖性前列腺癌细胞系PC3裸小鼠皮下移植瘤模型,随机分为溶酶对照组,姜黄素组,紫杉醇组和姜黄素+紫杉醇(半量)组(n=6)。姜黄素每隔2天腹腔注射100mg/kg,紫杉醇每3天腹腔注射10mg/kg,联合组紫杉醇减半,对照组注射药物溶剂。每6天测量计算移植瘤体积并绘制肿瘤生长曲线。药物注射30天后,取移植瘤组织标本分别进行免疫组化和定量RT-PCR,检测金属基质蛋白酶2(MMP2),增殖细胞核抗原(PCNA)蛋白及mRNA的表达。结果:移植瘤体积在24~30天时,姜黄素组和紫杉醇组肿瘤体积较对照组有不同程度的减小。姜黄素+紫杉醇(半量)组在第30天内肿瘤生长体积和紫杉醇组相近,30天后合用组肿瘤体积小于单纯紫杉醇组(P<0.05)。姜黄素和紫杉醇明显降低PC3移植瘤组织中PCNA和MMP2mRNA的表达(P<0.01)。姜黄素+紫杉醇(半量)组瘤组织中PCNA和MMP2的mRNA表达均低于紫杉醇组(P<0.05)。免疫组化染色显示PCNA和MMP2蛋白表达在治疗组均降低,和瘤组织中mRNA表达变化相一致。结论...  相似文献   

12.
CD147对白血病细胞U937生长和肿瘤形成的影响   总被引:1,自引:0,他引:1  
目的:研究CD147对白血病细胞U937生长和肿瘤形成的影响。方法:分别采用脂多糖(LPS)或CD147单克隆抗体处理U937细胞;用RT-PCR和流式细胞术分别在mRNA和蛋白水平检测各组中CD147的表达情况;用流式细胞术检测在LtX3和CD147单克隆抗体作用下U937细胞周期的变化;用MTT法对各组细胞的生长状况进行分析;将细胞经皮下接种于裸鼠体内,对各组间肿瘤生长速度、肿瘤体积及裸鼠存活时间进行统计分析。结果:LPS在体外能够诱导自血病细胞U937表面CD147的表达,同时细胞增殖旺盛,但细胞凋亡数增加;使用CD147抗体阻断CD147后,能够将细胞周期阻断在G0/G1期,细胞活力下降,并诱导细胞凋亡;CD147抗体体外预处理能够抑制U937细胞在裸鼠体内的生长,使小鼠存活时间延长。结论:LPS可诱导U937细胞表面CD147分子表达增加,从而促进U937细胞的生长和肿瘤形成。  相似文献   

13.

Background

Curcumin inhibits the growth of esophageal cancer cell lines; however, the mechanism of action is not well understood. It is becoming increasingly clear that aberrant activation of Notch signaling has been associated with the development of esophageal cancer. Here, we have determined that curcumin inhibits esophageal cancer growth via a mechanism mediated through the Notch signaling pathway.

Methodology/Principal Findings

In this study, we show that curcumin treatment resulted in a dose and time dependent inhibition of proliferation and colony formation in esophageal cancer cell lines. Furthermore, curcumin treatment induced apoptosis through caspase 3 activation, confirmed by an increase in the ratio of Bax to Bcl2. Cell cycle analysis demonstrated that curcumin treatment induced cell death and down regulated cyclin D1 levels. Curcumin treatment also resulted in reduced number and size of esophagospheres. Furthermore, curcumin treatment led to reduced Notch-1 activation, expression of Jagged-1 and its downstream target Hes-1. This reduction in Notch-1 activation was determined to be due to the down-regulation of critical components of the γ-secretase complex proteins such as Presenilin 1 and Nicastrin. The combination of a known γ-secretase inhibitor DAPT and curcumin further decreased proliferation and induced apoptosis in esophageal cancer cells. Finally, curcumin treatment down-regulate the expressions of Notch-1 specific microRNAs miR-21 and miR-34a, and upregulated tumor suppressor let-7a miRNA.

Conclusion/Significance

Curcumin is a potent inhibitor of esophageal cancer growth that targets the Notch-1 activating γ-secretase complex proteins. These data suggest that Notch signaling inhibition is a novel mechanism of action for curcumin during therapeutic intervention in esophageal cancers.  相似文献   

14.
As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.  相似文献   

15.
In clinical practice, most patients with non small cell lung cancer (NSCLC) who respond to tyrosine kinase inhibitors eventually progress because of an acquired resistance mutation, T790M, in epidermal growth factor receptor (EGFR). Thus, it is important to identify a new drug to reduce resistance. The aim of this study was to test whether genistein combined with gefitinib is effective against NSCLC in a cell line carrying T790M, and to clarify the underlying mechanisms. The human lung cancer cell line H1975 was used as an in vitro and in vivo model. Cells were treated with gefitinib, genistein, or a combination at a range of concentrations. Cell proliferation was calculated to assess the anticancer effects of the compounds in vitro. Flow cytometry and Western blotting were employed to determine the inhibitory effects on proliferation and the induction of apoptosis. The in vivo effects of the compounds were examined using a xenografted nude mouse model for validation. Gefitinib together with genistein enhanced both growth inhibition and apoptosis; however, the greatest synergistic effect was observed at low concentrations. p-EGFR, p-Akt, and p-mTOR expressions in vitro were reduced more by the combined use of the drugs, whereas caspase-3 and PARP activities were increased. Significantly more tumor growth inhibition was detected following combination treatment in the in vivo model. These findings suggest that genistein enhanced the antitumor effects of gefitinib in a NSCLC cell line carrying the T790M mutation. This synergistic activity may be due to increased inhibition of the downstream molecular and pro-apoptotic effects of EGFR.  相似文献   

16.
Curcumin attracts worldwide scientific interest due to its anti-proliferative and apoptosis inducing effects on different tumor cells at concentrations ranging from 10 to 150 µM (3.7–55 µg/ml). Unfortunately, because of a low oral bioavailability, only low and pharmacologically ineffective serum levels are achievable. In this study, an alternative treatment concept consisting of low concentration curcumin (0.2–5 µg/ml) and irradiation with UVA or visible light (VL) has been tested. The experimental results show clearly that this treatment decreases the proliferation and the viability of human melanoma cells while the cell membrane integrity remains intact. We identified the onset of apoptosis characterized by typical markers such as active caspases 8, 9 and 3 as well as DNA fragmentation accompanied by the loss of cell adhesion. The mitochondrial apoptosis signaling pathway is predominant due to an early activation of caspase-9. The present data indicate a higher efficacy of a combination of curcumin and VL than curcumin and UVA. Reduced effects as a result of light absorption by heavily pigmented skin are unlikely if VL is used. These results indicate that a combination of curcumin and light irradiation may be a useful additional therapy in the treatment of malignant disease.  相似文献   

17.
Qi Y  Fu X  Xiong Z  Zhang H  Hill SM  Rowan BG  Dong Y 《PloS one》2012,7(2):e31539
A major challenge in breast cancer therapy is the lack of an effective therapeutic option for a particularly aggressive subtype of breast cancer, triple-negative breast cancer. Here we provide the first preclinical evidence that a second-generation selenium compound, methylseleninic acid, significantly enhances the anticancer efficacy of paclitaxel in triple-negative breast cancer. Through combination-index value calculation, we demonstrated that methylseleninic acid synergistically enhanced the growth inhibitory effect of paclitaxel in triple-negative breast cancer cells. The synergism was attributable to more pronounced induction of caspase-mediated apoptosis, arrest of cell cycle progression at the G2/M checkpoint, and inhibition of cell proliferation. Treatment of SCID mice bearing MDA-MB-231 triple-negative breast cancer xenografts for four weeks with methylseleninic acid (4.5 mg/kg/day, orally) and paclitaxel (10 mg/kg/week, through intraperitoneal injection) resulted in a more pronounced inhibition of tumor growth compared with either agent alone. The attenuated tumor growth correlated with a decrease in tumor cell proliferation and an induction of apoptosis. The in vivo study also indicated the safety of using methylseleninic acid in the combination regime. Our findings thus provide strong justification for the further development of methylseleninic acid and paclitaxel combination therapy for the treatment of triple-negative breast cancer.  相似文献   

18.
An endocrinologically-potent octapeptide analogue of somatostatin (SRIF), 3-(2-naphthyl)-D-Ala-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (BIM-23014 C), was examined for its ability to inhibit the in vitro and in vivo growth of the human small cell lung carcinoma (SCLC) line, NCI-H69. When cultured cells were implanted into athymic nude mice, treatment (500 micrograms/injection, twice daily) resulted in a prolongation of lag time for the appearance of measurable tumors, and there was a marked inhibition of the growth rate. Indeed, peptide injection in the region of the tumor resulted in a complete regression of the NCI-H69 tumors. Withdrawal of BIM-23014 C treatment resulted in an acceleration of tumor growth indicating an antiproliferative rather the oncolytic action. A similar inhibition of tumor growth was also observed when solid tumors obtained from the first implantation were used as the donor tissues. In cell culture, the proliferation in the presence of a low concentration (10nM) of BIM-23104 C was also significantly retarded suggesting a direct mechanism of action.  相似文献   

19.
Melanoma incidences have increased over the last few decades and metastatic melanoma is one of the hardest malignancies to treat. Thus, novel approaches are needed for an effective management of melanoma. Interferon-α2b (IFN), an immunomodulatory cytokine commonly used in melanoma treatment, has shown marginal efficacy and often results in discontinuation of therapy due to toxicity. We earlier demonstrated that epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, caused cell cycle arrest and apoptosis of human melanoma cells via modulation in cki-cyclin-cdk machinery and Bcl-2 family proteins. This study was undertaken to determine if EGCG could enhance the anti-proliferative effects of IFN. In this study, we demonstrated that EGCG and/or IFN treatments to melanoma cells resulted in a marked i) decrease in cell proliferation and colony formation ability, and ii) induction of apoptosis. Interestingly, the combination was found to be more effective than either of the agents alone. Further, the anti-proliferative effects of EGCG and/or IFN were accompanied with an increase in FAS protein levels and a decrease in nuclear factor NF-κB/p65 in the nucleus as well as NF-κB promoter activity. EGCG and/or IFN also resulted in an increase in FAS-L mediated apoptosis. Further, EGCG and/or IFN treatments resulted in a decrease in melanoma tumor growth and protein levels of proliferation marker PCNA, in athymic nude mice implanted with melanoma tumors. The combination of the two modalities demonstrated a better response than either of them alone. Our data suggest that EGCG could impart therapeutic advantage if used in conjunction with IFN.  相似文献   

20.
To study the role of c-Src in breast cancer tumorigenesis, we generated a cell line derived from MCF7 carrying an inducible dominant negative c-Src (c-SrcDN: K295M/Y527F) under tetracycline control (Tet-On system). c-SrcDN expression caused phenotypic changes, relocation of c-Src, Fak, and paxillin, and loss of correct actin fiber assembly. These alterations were coupled to increased Fak-Tyr(397) autophosphorylation and to inhibition of Fak-Tyr(925), p130(CAS), and paxillin phosphorylation. An increased association of total Src with Fak and a decreased interaction of p130(CAS) and p85-PI3K with Fak were also observed. SrcDN inhibited cell attachment, spreading, and migration. Serum and EGF-induced stimulation of cell proliferation and Akt phosphorylation were also significantly reduced by SrcDN, whereas p27(Kip1) expression was increased. Consistently, silencing c-Src expression by siRNA in MCF7 cells significantly reduced cell migration, attachment, spreading and proliferation. Inoculation of MCF7 cells carrying inducible SrcDN to nude mice generated tumors. However, doxycycline administration to mice significantly reduced tumorigenesis, and when doxycycline treatment was installed after tumor development, a significant tumor regression was observed. In both situations, inhibition of tumorigenesis was associated with decreased Ki67 staining and increased apoptosis in tumors. These data undoubtedly demonstrate the relevance of the Src/Fak complex in breast cancer tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号