首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ghang DM  Yu L  Lim MH  Ko HM  Im SY  Lee HB  Bai S 《Biotechnology letters》2007,29(8):1203-1208
Amylolytic industrial polyploid strains of Saccharomyces cerevisiae (ATCC 4126, ATCC 9763 and ATCC 24858) expressing a glucoamylase gene (GAM1) or an α-amylase gene (AMY) from Debaryomyces occidentalis were developed. The glucoamylase activity of S. cerevisiae ATCC 9763 expressing the GAM1 gene was 3.7-times higher than that of D. occidentalis. On the other hand, α-amylase activity in the corresponding strain expressing the D. occidentalis AMY gene increased 10-times relative to D. occidentalis. These two recombinant yeast strains expressing the GAM1 gene and AMY gene, respectively were cultured simultaneously to produce both glucoamylase and α-amylase for efficient one-step utilization of starch. Growth, substrate utilization and enzyme activity of these strains are described.  相似文献   

2.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol. Project supported by the Guangdong Natural Science Foundation.  相似文献   

3.
Aspergillus niger hyphae were found to grow with unliquefied potato starch under aerobic conditions, but did not grow under anaerobic conditions. The raw culture ofA. niger catalyzed saccharification of potato starch to glucose, producing approximately 12 g glucose/L/day/ The extracellular enzyme activity was decreased in proportion to incubation time, and approximately 64% of initial activity was maintained after 3 days. At 50°C,A. niger hyphae growth stopped, while the extracellular enzyme activity peaked. On the basis of theA. niger growth property and enzyme activity, we designed a serial bioreactor system composed of four different reactors. Fungal hyphae were cultivated in reactor I at 30°C, uniquefied starch was saccharified to glycose by a fungal hyphae culture in reactors II and III at 50°C, and glucose was fermented to ethanol bySaccharomyces cerevisiae in reactor IV. The total glucose produced by fungal hyphae in reactor I and saccharification in reactor II was about 42 g/L/day. Ethanol production in reactor IV was approximately 22 g/L/day, which corresponds to about 79% of the theoretical maximum produced from 55 g starch/L/day.  相似文献   

4.
Summary Saccharomyces diastaticus produces an extracellular glucoamylase and is therefore capable of hydrolyzing and fermenting starch. Tamaki (1978) studied starch utilization in S. diastaticus and found three polymeric genes controlling this function: STA1, STA2 and STA3. Independently, Erratt and Stewart (1978) studied dextrin utilization by the yeast S. diastaticus and designated the gene, which they identified, DEX1. Erratt and Stewart (1981a, b) later described two other genes which controlled glucoamylase production in S. diastaticus: DEX2 and a third which was allelic to STA3. At that time STA1 and STA2 were not available to test for allelism in the DEX gene family. In this study strains containing the remaining 4 genes have been examined to determine if further allelism exists between the two gene families. It was ascertained that DEX1 is allelic to STA2 and DEX2 is allelic to STA1. Therefore, no new gene controlling starch utilization has been identified and these two nomenclatures can now be consolidated into one. Based on the fact that the glucoamylase from S. diastaticus can hydrolyze both dextrin and starch, dextrin being the term used to described partially hydrolyzed starch, and the more wide use of the nomenclature STA, we propose to retain STA as the designation for genes coding for glucoamylase production in S. diastaticus.  相似文献   

5.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

6.
Recombinant Saccharomyces cerevisiae YKU 131 (capable of expressing glucoamylase) was used to produce ethanol from sago starch. The optimum C/N ratio for ethanol production by the recombinant yeast was 7.9, where 4.7 and 10.1 g/l ethanol was produced from 20 and 40 g/l sago starch, respectively. At sago starch concentration higher than 40 g/l and C/N ratio higher than 10.4, glucoamylase production and rate of starch hydrolysis were reduced, which in turn, reduced ethanol production significantly. The theoretical yield of ethanol based on sago starch consumed in fermentation using 40 g/l was 72.6%. This yield was slightly lower than those obtained in fermentation using soluble starch such as potato and corn starch, which ranged from 80–90% as reported in the literature. However, S. cerevisiae YKU 131 could only utilize 62% of the total amount of starch added to a medium.  相似文献   

7.
Glucoamylase is an industrially extremely important enzyme in the fermentative production of ethanol, used in the enzymatic conversion of starch into high glucose and fructose syrups. The aim of this study is to construct a Rhizopus arrhizus glucoamylase gene (RaGA)—introns artificially spliced by PCR—suitable for expression in S. cerevisiae host and tried expressing in Picha pastoris. In previous work, we failed in amplifying glucoamylase gene from R. arrhizus by RT-PCR, so several primers were designed to splicing the introns by PCR in vitro. Sequence analysis shown that all introns in the RaGA were deleted correctly and no mutant was induced in the extrons compared with the RaGA gene originally cloned. The RaGA gene artificially constructed was transferred into P. pastoris integrative expression vectors pPIC9 (containing а-factor). Consequently, the plasmids pPIC9-RaGA was lineared by SacI and inserted into P. pastoris GS115 (His) genome downstream of the 5′AOX1 promoter by the method of electroporation. Induction by 0.75% methanol for 72 h led to synthesis of secreted glucoamylase. So it is demonstrated that the glucoamylase gene has been expressed in and secreted from P. pastoris.  相似文献   

8.
Glucoamylases are inverting exo-acting starch hydrolases releasing β-glucose from the non-reducing ends of starch and related substrates. Due to the absence of glucoamylase in Saccharomyces cerevisiae, it is not capable of utilizing starch directly as energy sources without enzymatic or chemical hydrolysis for its ethanol production. In this study, we heterologously expressed a previously isolated Rhizopus arrhizus glucoamylase gene in S. cerevisiae host. The expressed glucoamylase enzyme was secreted into the culture supernatant and exhibited a molecular weight of 68 kDa on SDS-PAGE gel and western blot. In the flask ferment experiment of S. cerevisiae growing on raw starch, the RaGA transformed strains could utilize starch as energy source to produce ethanol up to a final concentration as 5%.  相似文献   

9.
Summary A DNA fragment containing the gene coding for extracellular glucoamylase ofSaccharomycopsis fibuligera was isolated from a genomic DNA library of the organism.Saccharomyces cerevisiae cells transformed with a plasmid carrying the cloned gene secreted glucoamylase having the same enzymatic properties as those ofS. fibuligera glucoamylase, and fermented starch. Southern blot analysis of genomic DNA fromS. fibuligera confirmed that the glucoamylase gene was derived fromS. fibuligera.  相似文献   

10.
During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation. However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect of overexpressing the native NADH kinase (encoded by the POS5 gene) in xylose-consuming recombinant S. cerevisiae directed either into the cytosol or to the mitochondria was evaluated. The physiology of the NADH kinase containing strains was also evaluated during growth on glucose. Overexpressing NADH kinase in the cytosol redirected carbon flow from CO2 to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol. In contrast, overexpressing NADH kinase in the mitochondria did not affect the physiology to a large extent. Overall, although NADH kinase did not increase the rate of xylose consumption, we believe that it can provide an important source of NADPH in yeast, which can be useful for metabolic engineering strategies where the redox fluxes are manipulated.  相似文献   

11.
An in-depth characterization of the Aspergillus niger glucoamylase (glaA) promoter performance was carried out on defined medium employing multi-well high-throughput screening as well as controlled batch and fed-batch bioreactor culture techniques with GFP as a fluorescent reporter protein. A variety of metabolizable carbon substrates and non-metabolizable analogs were screened with regard to their effect on the glaA expression system. The results clearly demonstrate that only starch and its hydrolytic products, including glucose, act as inducers. However, induction of the glaA expression system through the monosaccharide glucose is significantly lower compared to starch and the higher molecular weight starch degradation products. All other 26 carbon substrates tested do not induce, or even, as in the case of the easily metabolizable monosaccharide xylose, repress glaA-promoter controlled gene expression in the presence of the inducing disaccharide maltose with an increase of repression strength by increasing xylose concentrations. The complex effect of glucose on glaA-promoter controlled expression was also analyzed using non-metabolizable glucose analogs, namely 5-thio-glucose and 2-deoxyglucose, which were identified as novel and potent inducers of the glaA expression system. The results show that the induction strength depends on the inducer concentration with a maximum at defined concentrations and lower induction or even repression at concentrations above. Moreover, controlled fed-batch cultivations using a high maltose feed rate with concomitant extracellular accumulation of glucose resulted in lower levels of the reporter protein compared to cultures with a low-maltose feed rate without extracellular glucose accumulation, thus supporting the conclusion that increasing the glucose concentration beyond a critical point reduces the induction strength or may even cause repression. This way, the speed of polymer hydrolysis, glucose uptake and intracellular breakdown can be fine-tuned for optimal fungal growth and the metabolic burden for glucoamylase synthesis can be limited adequately in response to nutrient availability.  相似文献   

12.
Arthrobotrys amerospora ATCC 34468 produced glucoamylase in a medium containing maize starch as carbon source. On native PAGE, crude glucoamylase showed three isoenzymes which were designated as Glu I, Glu II, Glu III according to their electrophoretic mobility. These were purified by column chromatography techniques. The energy of binding for each glucoamylase was calculated using Hiromi's kinetic based calculation. At subsite 1, the binding energies for Glu I, II and III were found to be negative.  相似文献   

13.
The streptokinase (SK) gene from S. equisimilis H46A (ATCC 12449) was cloned in E. coli W3110 under the control of the tryptophan promoter. The recombinant SK, which represented 15% of total cell protein content, was found in the soluble fraction of disrupted cells. The solubility of this SK notably differed from that of the product of the SK gene from S. equisimilis (ATCC 9542) which had been cloned in E. coli W3110 by using similar expression vector and cell growth conditions, and occurred in the form of inclusion bodies.  相似文献   

14.
Arxula adeninivorans Ls3 is described as an ascomycetous, arthroconidial, anamorphic, xerotolerant yeast, which was selected from wood hydrolysates in Siberia. By using minimal salt medium or yeast-extract-peptone-medium with glucose or maltose as carbon source it was shown that this yeast is able to grow at up to 48° C. Increasing temperatures induce changes in morphology from the yeast phase to mycelia depending on an altered programme of gene expression. This dimorphism is an environmentally conditioned (reversible) event and the mycelia can be induced at a cultivation temperature of 45° C. Depending on the morphology of strain Ls3 (yeast phase or mycelia) the secretion behaviour as well as the spectrum of polypeptides accumulated in the culture medium changed. The activities of the accumulated extracellular enzymes glucoamylase and invertase were 2 to 3 times higher in cultures grown at 45° C than in those grown at 30° C. While the level of the glucoamylase protein secreted from mycelia between 45 and 70 hours did not change, biochemical activity decreased after a cultivation time of 43 hours. It was shown that this effect depended on both the catabolic repression of the glucoamylase by glucose and the thermal inactivation of this enzyme in media without or with low concentrations of starch or maltose.  相似文献   

15.
Summary The cloning of glucoamylase geneSTA using theSUC2 promoter intoSaccharomyces cerevisiae was performed. The signal sequence ofSTA gene was used for the secretion of glucoamylase protein. The plasmid constructed in this way was named YEpSUCSTA and its expression was identified. The expression of YEpSUCSTA was repressed in the presence of glucose in growth medium, but derepressed when glucose became depleted. YEpSUCSTA showed the similar efficiency of glucoamylase secretion as YEpSTA-F which has the entireSTA gene. Glucoamylase activity in starch-glucose medium was largely increased because cell mass and plasmid stability were high in biosynthesis phase compared to extracellular glucoamylase activities in media which starch or glucose was the only carbon source.  相似文献   

16.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

17.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

18.
19.
The kinetic affinity for CO2 of phosphoenolpyruvate PEP5 carboxykinase from Anaerobiospirillum succiniciproducens, an obligate anaerobe which PEP carboxykinase catalyzes the carboxylation of PEP in one of the final steps of succinate production from glucose, is compared with that of the PEP carboxykinase from Saccharomyces cerevisiae, which catalyzes the decarboxylation of oxaloacetate in one of the first steps in the biosynthesis of glucose. For the A. succiniciproducens enzyme, at physiological concentrations of Mn2+ and Mg2+, the affinity for CO2 increases as the ATP/ADP ratio is increased in the assay medium, while the opposite effect is seen for the S. cerevisiae enzyme. The results show that a high ATP/ADP ratio favors CO2 fixation by the PEP carboxykinase from A. succiniciproducens but not for the S. cerevisiae enzyme. These findings are in agreement with the proposed physiological roles of S. cerevisiae and A. succiniciproducens PEP carboxykinases, and expand recent observations performed with the enzyme isolated from Panicum maximum (Chen et al. (2002) Plant Physiology 128: 160–164).  相似文献   

20.
The occurrence of the killer character was studied in 840 Saccharomyces cerevisiae isolates at the end of spontaneous fermentations in four wine-producing regions of Greece, Mantinia and Nemea in Peloponnese and the islands Limnos and Santorini. The incidence of killer strains varied from one region to another. Sensitive and neutral strains were also found among the S. cerevisiae strains. Using the plate bioassay at pH 4.5 two different killer phenotypes were detected among the killer isolates which differed in their degree of killer activity. They were designated as SK (strong killer) and WK (weak killer). The proportion of SK to WK phenotypes differed from one area to another. All killer isolates were assayed for expression of killer activity also at pH 3.5. The lower pH decreased the killer activity of all isolates and changed the proportion of SK to WK phenotypes. The percentage of WK phenotypes increased in all cases and some killer isolates lost their killer activity completely, but generally the killer activity remained significant, especially in the area of Mantinia where the SK phenotype remained dominant at the low pH found in musts and wine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号