首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
G蛋白偶联受体家族卵巢癌G蛋白偶联受体1(ovarian cancer G protein-coupled receptor 1, OGR1)亚家族的OGR1、T细胞死亡偶联基因8(T-cell death associated gene 8, TDAG8)、G 蛋白偶联受体4(G protein-coupled receptor 4, GPR4)及诱导细胞停滞于G2/M期的G蛋白偶联受体G2A(from G2 accumulation)4 种受体是最新发现的一类质子感知受体.除了质子,体内又有它们各自特定的脂质分 子配体活化这些受体来调节细胞机能.该类受体广泛分布于人的各种正常组织和肿瘤 组织细胞中,在肿瘤的发生与转移、细胞骨架重组等生理病理过程中发挥双重作用. 正常表达时它们有一定的抑制肿瘤作用,但这些受体的异常表达或过表达使某些组织 和细胞恶性转化,导致肿瘤的发生.本文综述了在肿瘤组织的酸性微环境中,细胞表 达的质子(pH)感知受体对肿瘤发生与肿瘤转移的调节作用及其相关的信号通路.  相似文献   

2.
降钙素基因相关肽(calcitonin gene-related peptide,CGRP)是一种神经肽,它由37个氨基酸残基组成。CGRP通过激活细胞膜上的CGRP受体参与循环系统、神经系统等功能的调节,特别是CGRP在血管舒张以及偏头痛中发挥着重要的作用。过去认为CGRP受体是一种经典的G蛋白偶联受体,具有G蛋白偶联受体的结构特性。近年来发现,与经典的G蛋白偶联受体不同,具有生物活性的CGRP受体由降钙素受体样受体(calcitonin receptor-like receptor,CLR)、受体活性修饰蛋白-1(receptor activity modifying protein,RAMP1)和受体组成蛋白(receptor component protein,RCP)组成,CGRP受体的这些不同组分在跨膜信号转导中分别发挥不同的作用。RAMP参与多种G蛋白偶联受体的组成,在G蛋白偶联受体的表型及功能调节等方面具有重要的作用。所以,RAMP的发现修正了有关G蛋白偶联受体的基本概念和理论。目前对CLR,RAMP以及RCP在CGRP受体激活和信号转导中作用的研究已经有了很大的进展。深入研究RAMP的胞外N末端和RAMP的单跨膜区域如何协同CLR以识别并结合相应的配体,以及G蛋白与RCP之间怎样相互作用,都将为有关G蛋白偶联受体的理论提供新的内容。本文将综述CGRP受体各组分的结构和功能,以及它们之间的相互作用对CGRP受体功能的影响。  相似文献   

3.
G蛋白偶联受体(GPCRs)在大脑信号传递中至关重要,而在阿尔兹海默症(AD)中,G蛋白偶联受体通过调控α-、β-及γ-分泌酶分泌、淀粉样前体蛋白(APP)生成及β-淀粉样蛋白(Aβ)降解,直接影响β-淀粉样蛋白在神经系统信号级联反应;另外,阿尔兹海默症中β-淀粉样蛋白的生成可以扰乱G蛋白偶联受体功能.因此,阐明G蛋白偶联受体与阿尔兹海默症发病之间的关联有助于开发以G蛋白偶联受体为靶点的阿尔兹海默症治疗药物.  相似文献   

4.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是一类重要的细胞膜表面跨膜蛋白受体超家族,具有7个跨膜螺旋结构。GPCRs的细胞内信号由G蛋白介导,可将激素、神经递质、药物、趋化因子等多种物理和化学的细胞外刺激穿过细胞膜转导到细胞内不同的效应分子,激活相应的信号级联系统进而影响恶性肿瘤的生长迁移过程。虽然目前药物市场上有很多治疗癌症的小分子药物属于G蛋白受体相关药物,但所作用的靶点集中于少数特定G蛋白偶联受体。因此,新的具有成药性的G蛋白偶联受体的开发具有很大的研究价值和市场潜力。本文主要以在癌症发生、发展中起重要作用的溶血磷脂酸(LPA),G蛋白偶联受体30(GPR30)、内皮素A受体(ETAR)等不同G蛋白偶联受体为分类依据,综述其与相关的信号通路在癌症进程中的作用,并对相应的小分子药物的临床应用和研究进展进行展望。  相似文献   

5.
G蛋白偶联受体激酶(G protein-coupled receptor kinase,GRK)特异地使活化的G蛋白偶联受体(G protein-coupled receptor,GPCR)发生磷酸化及脱敏化,从而终止后者介导的信号转导通路。研究表明,GRK的功能被高度调控,并具有下行调节GPCR的能力。调控GRK功能的机制包括两个层次:(1)多种途径调控激酶的亚细胞定位及活性,包括GPCR介导、G蛋白偶联、磷脂作用、Ca^2 结合蛋白调控、蛋白激酶C活化、MAPK反馈抑制、小窝蛋白抑制等;(2)调控GRK表达水平,主要体现在其与某些疾病的联系。  相似文献   

6.
β-arrestin的生物学研究进展   总被引:1,自引:0,他引:1  
Wang QT  Wei W 《生理科学进展》2008,39(2):162-164
β-arrestin 1和2是一类介导受体脱敏的重要可溶性蛋白质,对绝大部分与受体偶联G蛋白介导的信号转导具有重要调节作用,在G蛋白偶联受体(G protein-coupled receptors, GPCRs)脱敏、内化、复敏、细胞增殖反应和基因转录中具有重要地位.对β-arrestin介导的复杂信号通路的研究将揭示它们的调节功能对人类健康的影响,有助于开发新一代影响GPCRs的药物.  相似文献   

7.
G蛋白偶联受体的结构与功能   总被引:7,自引:0,他引:7  
G蛋白偶联受体(Gprotein-coupled receptor,GPCR)是具有7个跨膜螺旋的蛋白质受体,根据其序列的相似性以及与配基的结合情况,共分为5个亚家族,是人体内最大的蛋白质家族,也是重要的药物靶标。二聚体或寡聚体的形成,以及G蛋白偶联受体多元素参与的信号网络传递模式的研究,打破了传统的配基→G蛋白偶联受体→G蛋白→效应器的这种单一的线性信号传递模式,它的结构与功能的研究对于新药的开发、研制以及推动医药领域的发展起着举足轻重的作用。  相似文献   

8.
G蛋白偶联受体二聚化研究进展   总被引:1,自引:0,他引:1  
高灿  池志强 《生命科学》2001,13(5):193-197
G蛋白偶联受体是细胞膜受体最大的家族,参与调节多种生理过程,在信号识别及转导中具有重要作用,传统观点认为G蛋白偶联受体作为单体起作用,近年来,越来越多的证据表明,G蛋白偶联受体不仅能以二聚体形式存在,而且在细胞信号转导中起重要作用,尤其是对阿片受体异源二聚体的研究,推动了这一领域的研究。本文综述了G蛋白偶联受体二聚化研究进展,以及同源和异源二聚体的结构与功能。  相似文献   

9.
孤儿G蛋白偶联受体研究进展   总被引:3,自引:0,他引:3  
孤儿G蛋白偶联受体的研究意味着发现其尚未了解的内源性配体,是后基因组时代功能基因组学研究的热点之一,对生命科学的发展具有深 影响。本文介绍孤儿G蛋白偶联受体的概念、研究策略及其应用。  相似文献   

10.
2型糖尿病约占糖尿病总病例数的90%,目前研发的其新型治疗药物主要是通过调节糖代谢通路来控制血糖水平,它们可通过激活 G蛋白偶联受体尤其是G蛋白偶联受体40,增强胰岛β细胞功能,促进胰岛素分泌,提高机体对胰岛素的敏感性,从而达到治疗糖尿病的目的。 G蛋白偶联受体40作为抗2型糖尿病的新靶点,以其潜在优势,在糖尿病治疗领域备受关注。简介G蛋白偶联受体与其配体游离脂肪酸, 重点综述不同结构的G蛋白偶联受体40激动剂的研究进展。  相似文献   

11.
T cell death-associated gene 8 (TDAG8) is a G-protein-coupled receptor mainly expressed in lymphoid organs and cancer tissues. TDAG8 shares high amino acid sequence homologies with recently reported proton-sensing G-protein-coupled receptors, G2A, OGR1, and GPR4. Here we have identified TDAG8 as a novel proton-sensing receptor. Upon acid stimulation, stably expressed TDAG8 was internalized from the plasma membrane. As a signaling pathway downstream of TDAG8, accumulation of cyclic AMP was observed in response to solutions with a pH value lower than 7.2. Furthermore, RhoA activation and actin rearrangement were elicited by acid-stimulated TDAG8. These results suggest that TDAG8 may play biological roles in immune response and cellular transformation under conditions accompanying tissue acidosis.  相似文献   

12.
13.
14.
Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-α, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-α production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.  相似文献   

15.
T cell death-associated gene 8 (TDAG8) has been reported to be a receptor for psychosine. Ovarian cancer G-protein-coupled receptor 1 (OGR1) and GPR4, G-protein-coupled receptors (GPCRs) closely related to TDAG8, however, have recently been identified as proton-sensing or extracellular pH-responsive GPCRs that stimulate inositol phosphate and cAMP production, respectively. In the present study, we examined whether TDAG8 senses extracellular pH change. In the several cell types that were transfected with TDAG8 cDNA, cAMP was markedly accumulated in response to neutral to acidic extracellular pH, with a peak response at approximately pH 7.0-6.5. The pH effect was inhibited by copper ions and was reduced or lost in cells expressing mutated TDAG8 in which histidine residues were changed to phenylalanine. In the membrane fractions prepared from TDAG8-transfected cells, guanosine 5'-O-(3-thiotriphosphate) binding activity and adenylyl cyclase activity were remarkably stimulated in response to neutral and acidic pH. The concentration-dependent effect of extracellular protons on cAMP accumulation was shifted to the right in the presence of psychosine. The inhibitory psychosine effect was also observed for pH-dependent actions in OGR1- and GPR4-expressing cells but not for prostaglandin E(2)- and sphingosine 1-phosphate-induced actions in any pH in native and sphingosine 1-phosphate receptor-expressing cells. Glucosylsphingosine and sphingosylphosphorylcholine similarly inhibited the pH-dependent action, although to a lesser extent. Psychosine-sensitive and pH-dependent cAMP accumulation was also observed in mouse thymocytes. We concluded that TDAG8 is one of the proton-sensing GPCRs coupling to adenylyl cyclase and psychosine, and its related lysosphingolipids behave as if they were antagonists against protein-sensing receptors, including TDAG8, GPR4, and OGR1.  相似文献   

16.
17.

Background

Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear.

Results

In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function.

Conclusion

Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia.  相似文献   

18.
Insulin-like growth factor-I (IGF-I) receptors and insulin receptors belong to the same subfamily of receptor tyrosine kinases and share a similar set of intracellular signaling pathways, despite their distinct biological actions. In the present study, we evaluated T cell death-associated gene 51 (TDAG51), which we previously identified by cDNA microarray analysis as a gene specifically induced by IGF-I. We characterized the signaling pathways by which IGF-I induces TDAG51 gene expression and the functional role of TDAG51 in IGF-I signaling in NIH-3T3 (NWTb3) cells, which overexpress the human IGF-I receptor. Treatment with IGF-I increased TDAG51 mRNA and protein levels in NWTb3 cells. This effect of IGF-I was specifically mediated by the IGF-IR, because IGF-I did not induce TDAG51 expression in NIH-3T3 cells overexpressing a dominant-negative IGF-I receptor. Through the use of specific inhibitors of various protein kinases, we found that IGF-I induced TDAG51 expression via the p38 MAPK pathway. The ERK, JNK, and phosphatidylinositol 3-kinase pathways were not involved in IGF-I-induced regulation of TDAG51. To assess the role of TDAG51 in IGF-I signaling, we used small interfering RNA (siRNA) expression vectors directed at two different target sites to reduce the level of TDAG51 protein. In cells expressing these siRNA vectors, TDAG51 protein levels were decreased by 75-80%. Furthermore, TDAG51 siRNA expression abolished the ability of IGF-I to rescue cells from serum starvation-induced apoptosis. These findings suggest that TDAG51 plays an important role in the anti-apoptotic effects of IGF-I.  相似文献   

19.
20.
T-cell death-associated gene 51 (TDAG51) has been described to regulate T-cell receptor/CD3-dependent induction of CD95/Fas and subsequent activation-induced cell death (AICD) in a murine T-cell hybridoma. Using well-defined pharmacological inhibitors, we investigated the regulation of TDAG51 expression in human T-cells and the correlation with cell death. TDAG51 was induced in resting T-cells, lymphoid cell lines and AICD-susceptible as well as AICD-resistant T-cell clones, and induction was inhibited by MAP-kinase inhibitors and PKC inhibitor G?6983. No correlation between the effects of inhibitors on TDAG51 expression and cell death was observed. The constitutive TDAG51 expression in five pancreatic carcinoma cell lines was reduced by MAP-kinase inhibitors but not by G?6983. Furthermore, the inducible overexpression of TDAG51 in TetOn Jurkat cells did not modulate cellular proliferation, phorbolester/ionomycin-induced growth arrest, or the expression of various cell surface molecules. Our results indicate that the expression of TDAG51 in human T-cells does not correlate with AICD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号