首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Simple sequence repeats (SSRs) derived from expressed sequence tags (ESTs) are valuable markers because they represent transcribed regions and often have putative functions. We mined and characterized microsatellites in melon ESTs. Three hundred and eighty‐three SSR loci were identified in 309 of 3188 unigenes assembled by 5747 EST and mRNA sequences in GenBank with occurring frequency of 1/4.7 kb. Twenty‐two polymorphic EST‐SSR markers were developed with the mean allele number of 2.9 per locus and mean expected heterozygosity of 0.442. Amplification products were also detected by 15 pairs of primer in Cucumis sativus. Those informative EST‐SSR markers can be used in melon genetic improvement projects.  相似文献   

2.
Expressed sequence tags (ESTs) from turmeric (Curcuma longa L.) were used for the screening of type and frequency of Class I (hypervariable) simple sequence repeats (SSRs). A total of 231 microsatellite repeats were detected from 12,593 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs accounts to one SSR per 17.96 kb of EST. Mononucleotides were the most abundant class of microsatellite repeat in turmeric ESTs followed by trinucleotides. A robust set of 17 polymorphic EST–SSRs were developed and used for evaluating 20 turmeric accessions. The number of alleles detected ranged from 3 to 8 per loci. The developed markers were also evaluated in 13 related species of C. longa confirming high rate (100%) of cross species transferability. The polymorphic microsatellite markers generated from this study could be used for genetic diversity analysis and resolving the taxonomic confusion prevailing in the genus.  相似文献   

3.
A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database () to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15 cM.E. Silfverberg-Dilworth and C. L. Matasci contributed equally to this work.  相似文献   

4.
The public availability of large quantities of gene sequence data provides a valuable resource of the mining of Simple Sequence Repeat (SSR) molecular genetic markers for genetic analysis. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the characterization of barley EST‐SSRs and the identification of putative polymorphic SSRs from EST data. Polymorphic SSRs are distinguished from monomorphic SSRs by the representation of varying motif lengths within an alignment of sequence reads. Two measures of confidence are calculated, redundancy of a polymorphism and co‐segregation with accessions. The utility of this method is demonstrated through the discovery of 597 candidate polymorphic SSRs, from a total of 452 642 consensus expressed sequences. PCR amplification primers were designed for the identified SSRs. Ten primer pairs were validated for polymorphism in barley and for transferability across species. Analysis of the polymorphisms in relation to SSR motif, length, position and annotation is discussed.  相似文献   

5.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   

6.
Gobiobotia filifer is a small benthic fish distributed in Yangtze River Basin. The abundance of G. filifer increased after impoundment of Xiluodu Dam and Xiangjiaba Dam. The state of population structure and changes of genetic diversity before and after impoundment of Xiluodu Dam and Xiangjiaba Dam were interesting issues. However, efficient molecular markers were rare, which will limit us to solve above problems. Twenty‐eight expressed sequence tag SSRs (EST‐SSRs) were successfully identified and verified as stable amplification and polymorphic loci by polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The number of alleles at these EST‐SSR loci ranged from 3 to 14, the polymorphism information content values were 0.125–0.897, and the observed and expected heterozygosities were 0.0–0.857 and 0.132–0.928, respectively. Cross‐species amplification of the 28 loci developed in this study was examined in seven individuals of each of the 7 taxa. The amplification efficiency of 28 EST‐SSRs primer pairs is related to the distance of genetic relationship between cross‐species with G. filifer, and same subfamily species (Xenophysogobio boulengeri and Xenophysogobio nudicorpa) showed the highest (50%) amplification efficiency. These EST‐SSR markers could be used to analyse genetic diversity and population structure of G. filifer and related species.  相似文献   

7.
8.
The numbers of SSR markers and their utilization have not been determined and investigated as extensively in Fagopyrum species as compared to other crop species. The current report presents 136 new SSR markers in Fagopyrum esculentum ssp. esculentum and their application to related species in the genus Fagopyrum. Of the 136 SSRs, 10 polymorphic SSR markers were utilized in a genetic diversity analysis of a common buckwheat population consisting of 41 accessions of diverse origin. The study showed observed (H O) and expected (H E) heterozygosities ranging from 0.071 to 0.924 (mean = 0.53) and from 0.073 to 0.902 (mean = 0.412), respectively. Forty-one of the 136 SSRs amplified sequences in other Fagopyrum species, including the cymosum and urophyllum groups. The phylogenetic relationships revealed using the SSRs was consistent with results obtained using other marker systems, with one exception. The sequence and diversity information obtained using these new SSRs and their cross-transferability to related Fagopyrum species will increase our understanding of genetic structures and species relationships within the Fagopyrum genus.  相似文献   

9.

Background  

Alfalfa (Medicago sativa) is a major forage crop. The genetic progress is slow in this legume species because of its autotetraploidy and allogamy. The genetic structure of this species makes the construction of genetic maps difficult. To reach this objective, and to be able to detect QTLs in segregating populations, we used the available codominant microsatellite markers (SSRs), most of them identified in the model legume Medicago truncatula from EST database. A genetic map was constructed with AFLP and SSR markers using specific mapping procedures for autotetraploids. The tetrasomic inheritance was analysed in an alfalfa mapping population.  相似文献   

10.
Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study.  相似文献   

11.
SSR (simple sequence repeats) markers derived from ESTs (expressed sequence tags), commonly called EST‐SSRs or genic SSRs provide useful genetic markers for crop improvement. These are easy and economical to develop as by‐products of large‐scale EST resources that have become available as part of the functional genomic studies in many plant species. Here, we describe for the first time, nine genic‐SSRs of coffee that are developed from the microsatellite containing ESTs from a cDNA library of moisture‐stressed leaves of coffee variety, ‘CxR’ (a commercial interspecific hybrid between Coffea congensis and Coffea canephora). The markers show considerable allelic diversity with PIC values up to 0.70 and 0.75 for Coffea arabica and Coffea canephora, respectively, and robust cross‐species amplification in 16 other related taxa of coffee. The validation studies thus demonstrate the potential utility of the EST‐SSRs for genetic analysis of coffee germplasm.  相似文献   

12.

Background  

Multi-allelic microsatellite markers have become the markers of choice for the determination of genetic structure in plants. Synteny across cereals has allowed the cross-species and cross-genera transferability of SSR markers, which constitute a valuable and cost-effective tool for the genetic analysis and marker-assisted introgression of wild related species. Hordeum chilense is one of the wild relatives with a high potential for cereal breeding, due to its high crossability (both interspecies and intergenera) and polymorphism for adaptation traits. In order to analyze the genetic structure and ecogeographical adaptation of this wild species, it is necessary to increase the number of polymorphic markers currently available for the species. In this work, the possibility of using syntenic wheat SSRs as a new source of markers for this purpose has been explored.  相似文献   

13.
Sequence polymorphisms such as insertion/deletions (indels) and single nucleotide polymorphisms (SNP) are suitable for automated analysis of molecular markers and useful for cultivar identification, genetic mapping and trait association. While they are abundant, their initial discovery, comprising detection, validation and characterisation of sequence polymorphisms, is time consuming and expensive. This is especially true for multi-allellic hexaploid wheat. We investigated simple sequence repeat (SSR) flanking regions as a source for sequence polymorphisms in wheat. SSRs have a potentially high polymorphic frequency, there are a large number of highly characterised markers available, tested primers are published and most are single locus. Of 126 markers investigated, polymorphisms were found in 33 (26%) when tested in 10 wheat varieties. No new primers needed to be designed, the published primer sequences were used as PCR primers and then as sequencing primers. Polymorphism was detected by resequencing using a modification of pyrophosphate sequencing (Pyrosequencing®) which yielded quality sequencing from the first base after the primer with up to 80 bases of information. Our method of pyrophosphate sequencing of SSRs, although not suitable for full-length sequencing, is an attractive method to directly find sequence polymorphism in varieties of interest using the abundant, well characterised and published SSR markers.  相似文献   

14.
Simple Sequence Repeats (SSRs) developed from Expressed Sequence Tags (ESTs), known as EST-SSRs are most widely used and potentially valuable source of gene based markers for their high levels of crosstaxon portability, rapid and less expensive development. The EST sequence information in the publicly available databases is increasing in a faster rate. The emerging computational approach provides a better alternative process of development of SSR markers from the ESTs than the conventional methods. In the present study, 12,851 EST sequences of Camellia sinensis, downloaded from National Center for Biotechnology Information (NCBI) were mined for the development of Microsatellites. 6148 (4779 singletons and 1369 contigs) non redundant EST sequences were found after preprocessing and assembly of these sequences using various computational tools. Out of total 3822.68 kb sequence examined, 1636 (26.61%) EST sequences containing 2371 SSRs were detected with a density of 1 SSR/1.61 kb leading to development of 245 primer pairs. These mined EST-SSR markers will help further in the study of variability, mapping, evolutionary relationship in Camellia sinensis. In addition, these developed SSRs can also be applied for various studies across species.  相似文献   

15.
In this work, we tested 100 potential new microsatellites (SSRs) equally derived from expressed sequence tag (EST) and enriched genomic-DNA libraries from Senegalese sole (Solea senegalensis, Kaup), a valuable cultured flatfish species. A final set of 69 new polymorphic microsatellites were validated after a population analysis, 37 of which corresponded to the first EST library constructed for Senegalese sole (EST-SSR). Although differences were not significant, EST sequences provided a higher proportion of quality markers (74%) than anonymous ones (64%). Most of the rejected anonymous SSRs (17 loci) were discarded because they did not generate PCR products; only one was monomorphic. On the contrary, all EST-SSRs gave PCR products, although monomorphism was more frequent (26%). Altogether, the number of alleles per locus was fairly similar in both SSR types, ranging from 2 to 19. The observed and expected heterozygosities varied from 0.105 to 1 and from 0.108 to 0.937, respectively. The main difference between the two sets was the percentage of annotated loci, being higher in EST-SSRs, as expected. Within the EST-SSRs, 46% of them showed flanking regions that significantly matched with EST sequences from other three flatfish species; however, the microsatellite itself was present only on half of these cases. These two new SSR sets constitute a suitable tool for fingerprinting, gene flow, genetic diversity, genome mapping studies and molecular-assisted breeding in this species.  相似文献   

16.

Background

Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting.

Results

Here, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton.

Conclusions

The SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.  相似文献   

17.
Expressed sequence tags (ESTs) from Coffea canephora leaves and fruits were used to search for types and frequencies of simple sequence repeats (EST–SSRs) with a motif length of 1–6 bp. From a non-redundant (NR) EST set of 5,534 potential unigenes, 6.8% SSR-containing sequences were identified, with an average density of one SSR every 7.73 kb of EST sequences. Trinucleotide repeats were found to be the most abundant (34.34%), followed by di- (25.75%) and hexa-nucleotide (22.04%) motifs. The development of unique genic SSR markers was optimized by a computational approach which allowed us to eliminate redundancy in the original EST set and also to test the specificity of each pair of designed primers. Twenty-five EST–SSRs were developed and used to evaluate cross-species transferability in the Coffea genus. The orthology was supported by the amplicon sequence similarity and the amplification patterns. The >94% identity of flanking sequences revealed high sequence conservation across the Coffea genus. A high level of polymorphic loci was obtained regardless of the species considered (from 75% for C. liberica to 86% for C. canephora). Moreover, the polymorphism revealed by EST–SSR was similar to that exposed by genomic SSR. It is concluded that Coffea ESTs are a valuable resource for microsatellite mining. EST-SSR markers developed from C. canephora sequences can be easily transferred to other Coffea species for which very little molecular information is available. They constitute a set of conserved orthologous markers, which would be ideal for assessing genetic diversity in coffee trees as well as for cross-referencing transcribed sequences in comparative genomics studies.  相似文献   

18.
Eggplant (Solanum melongena L.), also known as aubergine or brinjal, is an important vegetable in many countries. Few useful molecular markers have been reported for eggplant. We constructed simple sequence repeat (SSR)-enriched genomic libraries in order to develop SSR markers, and sequenced more than 14,000 clones. From these sequences, we designed 2,265 primer pairs to flank SSR motifs. We identified 1,054 SSR markers from amplification of 1,399 randomly selected primer pairs. The markers have an average polymorphic information content of 0.27 among eight lines of S. melongena. Of the 1,054 SSR markers, 214 segregated in an intraspecific mapping population. We constructed cDNA libraries from several eggplant tissues and obtained 6,144 expressed sequence tag (EST) sequences. From these sequences, we designed 209 primer pairs, 7 of which segregated in the mapping population. On the basis of the segregation data, we constructed a linkage map, and mapped the 236 segregating markers to 14 linkage groups. The linkage map spans a total length of 959.1 cM, with an average marker distance of 4.3 cM. The markers should be a useful resource for qualitative and quantitative trait mapping and for marker-assisted selection in eggplant breeding.  相似文献   

19.
Traditionally, simple sequence repeat (SSR) markers have been developed from libraries of genomic DNA. However, the large, repetitive nature of conifer genomes makes development of robust, single-copy SSR markers from genomic DNA difficult. Expressed sequence tags (ESTs), or sequences of messenger RNA, offer the opportunity to exploit single, low-copy, conserved sequence motifs for SSR development. From a 20,275-unigene spruce EST set, we identified 44 candidate EST-SSR markers. Of these, 25 amplified and were polymorphic in white, Sitka, and black spruce; 20 amplified in all 23 spruce species tested; the remaining five amplified in all except one species. In addition, 101 previously described spruce SSRs (mostly developed from genomic DNA), were tested. Of these, 17 amplified across white, Sitka, and black spruce. The 25 EST-SSRs had approximately 9% less heterozygosity than the 17 genomic-derived SSRs (mean H=0.65 vs 0.72), but appeared to have less null alleles, as evidenced by much lower apparent inbreeding (mean F=0.046 vs 0.126). These robust SSRs are of particular use in comparative studies, and as the EST-SSRs are within the expressed portion of the genome, they are more likely to be associated with a particular gene of interest, improving their utility for quantitative trait loci mapping and allowing detection of selective sweeps at specific genes.  相似文献   

20.
Cultivated strawberry (Fragaria × ananassa) together with other economically important genera such as Rosa (roses) and Rubus (raspberry and blackberry) belongs to the subfamily Rosoideae. There is increasing interest in the development of transferable markers to allow genome comparisons within the Rosaceae family. In this report, 122 new genic microsatellite (SSR) markers have been developed from cultivated strawberry and its diploid ancestor Fragaria vesca. More than 77% of the sequences from which the markers were developed show significant homology to known or predicted proteins and more than 92% were polymorphic among strawberry cultivars, representing valuable markers in transcribed regions of the genome. Sixty-three SSRs were polymorphic in the diploid Fragaria reference population and were bin-mapped together with another five previously reported but unmapped markers. In total, 72 loci were distributed across the seven linkage groups. In addition, the transferability of 174 Fragaria SSRs to the related Rosa and Rubus genera was investigated, ranging from 28.7% for genic-SSRs in rose to 16.1% for genomic-SSRs in raspberry. Among these markers, 33 and 16 were both localized in the diploid Fragaria reference map and cross-amplified in rose and raspberry, respectively. These results indicate that transferability of SSRs across the Rosoideae subfamily is limited. However, we have identified a set of Fragaria markers, polymorphic in the diploid reference population, which cross-amplified in both Rosa and Rubus, which represents a valuable tool for comparative mapping and genetic diversity analyses within the Rosoideae subfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号