首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
2.
The transferability of microsatellite markers developed for olive cultivars (Olea europaea L.) has been tested and confirmed in the Olea complex. Thirty two genotypes, belonging to different taxa of the genus Olea, have been analyzed with four olive SSRs. Positive amplifications at all loci were obtained in 13 taxa (at least one accession per species). Sixty seven different alleles have been detected at the four loci analyzed. Polymorphic products have been observed at the inter- and intra-species level. Some SSR loci have shown multiple amplification products in some species. The high number of unique alleles has allowed the unambiguous discrimination of most accessions. Similarity coefficients and relationships among the Olea taxa have been calculated based on SSR amplification results. The reliability of SSRs as markers for intra-species variability evaluation has been confirmed while their use to explore relationships at the inter-species level is discussed, being dependent on the locus analyzed.Communicated by H.F. Linskens  相似文献   

3.
Expressed sequence tags (ESTs) from turmeric (Curcuma longa L.) were used for the screening of type and frequency of Class I (hypervariable) simple sequence repeats (SSRs). A total of 231 microsatellite repeats were detected from 12,593 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs accounts to one SSR per 17.96 kb of EST. Mononucleotides were the most abundant class of microsatellite repeat in turmeric ESTs followed by trinucleotides. A robust set of 17 polymorphic EST–SSRs were developed and used for evaluating 20 turmeric accessions. The number of alleles detected ranged from 3 to 8 per loci. The developed markers were also evaluated in 13 related species of C. longa confirming high rate (100%) of cross species transferability. The polymorphic microsatellite markers generated from this study could be used for genetic diversity analysis and resolving the taxonomic confusion prevailing in the genus.  相似文献   

4.
Seven clones containing (CTG)n/(CAG)n repeats (n ≥ 4) were isolated by screening Lycopersicon esculentum genomic DNA. Four of the clones contained more than one simple sequence repeat (SSR). The SSRs were analyzed in several L. esculentum cultivars after polymerase chain reaction (PCR) amplification. No length variations were observed, suggesting considerable locus stability. Five clones are from transcribed regions, which might explain the lack of cultivar variations. However the conservation of CTG repeats was limited as differences in some transcribed loci were registered between L. pennellii and other Lycopersicon species. It is noted that in Lycopersicon trinucleotide repeat variation might be used for species identification.  相似文献   

5.
Gobiobotia filifer is a small benthic fish distributed in Yangtze River Basin. The abundance of G. filifer increased after impoundment of Xiluodu Dam and Xiangjiaba Dam. The state of population structure and changes of genetic diversity before and after impoundment of Xiluodu Dam and Xiangjiaba Dam were interesting issues. However, efficient molecular markers were rare, which will limit us to solve above problems. Twenty‐eight expressed sequence tag SSRs (EST‐SSRs) were successfully identified and verified as stable amplification and polymorphic loci by polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The number of alleles at these EST‐SSR loci ranged from 3 to 14, the polymorphism information content values were 0.125–0.897, and the observed and expected heterozygosities were 0.0–0.857 and 0.132–0.928, respectively. Cross‐species amplification of the 28 loci developed in this study was examined in seven individuals of each of the 7 taxa. The amplification efficiency of 28 EST‐SSRs primer pairs is related to the distance of genetic relationship between cross‐species with G. filifer, and same subfamily species (Xenophysogobio boulengeri and Xenophysogobio nudicorpa) showed the highest (50%) amplification efficiency. These EST‐SSR markers could be used to analyse genetic diversity and population structure of G. filifer and related species.  相似文献   

6.
Amygdalus nana L., commonly known as wild almond, is an endangered wild relative of cultivated almond, which has great potential in almond crop breeding. In this study, we used microsatellite (SSR) loci derived from both expressed sequence tag (EST) and anonymous genomic sequence to explore the genetic diversity and population structure of A. nana in Xinjiang of China. Seven natural populations were collected across the whole distribution of A. nana in China, including populations from both inside (four populations) and outside (three populations) the established protected areas. A total of 22 and 19 alleles were detected from the seven pairs of EST and genomic SSR loci, respectively. Generally, the genomic SSRs showed lower levels of variation than EST-SSRs, which may partially due to the higher cross-species transferability in EST-SSRs than in genomic SSRs. The population-level genetic diversity (A = 1.84, P = 50.00%, Ho = 0.3491, HE = 0.2271) was lower than cultivated almond and several wild fruit species with similar breeding system. Most of the genetic variation (82.16%) was partitioned within populations. In particular, the population collected from Tacheng County (outside the protected areas) had the highest levels of genetic diversity and had significantly different genetic constitution from other populations.  相似文献   

7.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

8.
Simple sequence repeats (SSRs) have become one of the most popular molecular markers for population genetic studies. The application of SSR markers has often been limited to source species because SSR loci are too labile to be maintained in even closely related species. However, a few extremely conserved SSR loci have been reported. Here, we tested for the presence of conserved SSR loci in acanthopterygian fishes, which include over 14 000 species, by comparing the genome sequences of four acanthopterygian fishes. We also examined the comparative genome‐derived SSRs (CG‐SSRs) for their transferability across acanthopterygian fishes and their applicability to population genetic analysis. Forty‐six SSR loci with conserved flanking regions were detected and examined for their transferability among seven nonacanthopterygian and 27 acanthopterygian fishes. The PCR amplification success rate in nonacanthopterygian fishes was low, ranging from 2.2% to 21.7%, except for Lophius litulon (Lophiiformes; 80.4%). Conversely, the rate in most acanthopterygian fishes exceeded 70.0%. Sequencing of these 46 loci revealed the presence of SSRs suitable for scoring while fragment analysis of 20 loci revealed polymorphisms in most of the acanthopterygian fishes. Population genetic analysis of Cottus pollux (Scorpaeniformes) and Sphaeramia orbicularis (Perciformes) using CG‐SSRs showed that these populations did not deviate from linkage equilibrium or Hardy–Weinberg equilibrium. Furthermore, almost no loci showed evidence of null alleles, suggesting that CG‐SSRs have strong resolving power for population genetic analysis. Our findings will facilitate the use of these markers in species in which markers remain to be identified.  相似文献   

9.
The objectives of this research were to assess (1) the degree of Simple Sequence Repeats (SSR) DNA length polymorphism in melon (Cucumis melo L.) and other species within the Cucurbitaceae family and (2) the possibility of utilizing SSRs flanking primers from single species to other genera or species of Cucurbitaceae. Five melon (CT/GA) n SSRs were isolated from a genomic library. Two cucumber (Cucumis sativus L.) SSRs were detected through a search of DNA sequence databases, one contained a (CT)8 repeat, the other a (AT)13 repeat. The seven SSRs were used to test a diverse sample of Cucurbitaceae, including 8 melon, 11 cucumber, 5 squash, 1 pumpkin, and 3 watermelon genotypes. Five of the seven SSRs detected length polymorphism among the 8 melon genotypes. PCR amplification revealed between three and five length variants (alleles) for each SSR locus, with gene diversity values ranging from 0.53 to 0.75. Codominant segregation of the alleles among F2 progeny was demonstrated for each of the five SSR loci. Four of the seven SSRs detected polymorphism among the 11 cucumber genotypes, with gene diversity values ranging between 0.18 and 0.64. Primers specific to SSRs of C. melo and C. sativus also amplified DNA extracted from genotypes belonging to other genera of the Cucurbitaceae family.  相似文献   

10.
A set of 398 simple sequence repeat markers (SSRs) have been developed and characterised for use with genetic studies of Brassica species. Small-insert (250–900 bp) genomic libraries from Brassica rapa, B. nigra, B. oleracea and B. napus, highly enriched for dinucleotide and trinucleotide SSR motifs, were constructed. Screening the clones with a mixture of oligonucleotide repeat probes revealed positive hybridisation to between 75% and 90% of the clones. Of these, 1,230 were sequenced. Primer pairs were designed for 398 SSR clones, and of these, 270 (67.8%) amplified a PCR product of the expected size in their focal and/or closely related species. A further screen of 138 primers pairs that produced a PCR product in B. napus germplasm found that 86 (62.3%) revealed length polymorphisms within at least one line of a test array representing the four Brassica species. The results of this screen were used to identify 56 SSRs and were combined with 41 SSRs that had previously shown polymorphism between the parents of a B. napus mapping population. These 97 SSR markers were mapped relative to a framework of RFLP markers and detected 136 loci over all 19 linkage groups of the oilseed rape genome.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by O. Savolainen  相似文献   

11.
In this study, inter-simple sequence repeats (ISSR) ans simple sequence repeat (SSR) markers were used to investigate genetic diversity of 27 mulberry accessions including 19 cultivated accessions (six M. multicaulis, three M. alba, two M. atropurpurea, two M. bombycis, one M. australis, two M. rotundiloba, one M. alba var. pendula, one M. alba var. macrophylla, and one M. alba var. venose) and 8 wild accessions (two M. cathayana, two M. laevigata, two M. wittiorum, one M. nigra and one M. mongolica). ISSRs and SSRs were compared in terms of their informativeness and efficiency in a study of genetic diversity and relationships among 27 mulberry genotypes. SSRs presented a higher level of polymorphism and greater information content. All index values of genetic diversity both markers analyzed using Popgene 32 software indicated that within wild species had higher genetic diversity than within cultivated species. Cultivation may caused the lose of genetic diversity of mulberry compared with wild species revealed by ISSR and SSR markers. The mean genetic similarity coefficients among all mulberry genotypes ascribed by ISSR and SSR matrices were 0.7677 and 0.6131, respectively. For all markers a high similarity in dendrogram topologies was obtained although some differences were observed. Cluster analysis of ISSR and SSR using UPGMA method revealed that the wild species are genetically distant from the domesticated species studied here. The correlation coefficients of similarity were statistically significant for both marker systems used. Principal coordinates analysis (PCA) for ISSR and SSR data also supports their UPGMA clustering. These results have an important implication for mulberry germplasm characterization, improvement, molecular systematics and conservation.  相似文献   

12.
Sal (Shorea robusta Gaertn., Dipterocarpaceae) is a wind-pollinated tropical tree species found in southern Asia. We investigated the genetic diversity and structure at four microsatellites of 15 populations comprising continuous-peripheral and disjunct-peripheral populations in Nepal. Estimates of genetic diversity (N A = 8.98, H O = 0.62, H E = 0.69) were similar when compared with those of other tropical tree species. A higher level of genetic diversity was observed in continuous-peripheral populations (N A = 9.61, H O = 0.67, H E = 0.72) as compared to disjunct-peripheral (N A = 8.04, H O = 0.55, H E = 0.64). Population differentiation was higher among disjunct-peripheral populations (F ST = 0.043) than among continuous peripherals (F ST = 0.012). There was a significant association between gene flow distances and genetic differentiation (r 2 = 0.128, P ≤ 0.007). No spatial arrangement of populations according to their geographical locations was found. Based on observed genetic diversity protection of some populations in continuous-peripheral range are suggested for the sustainable conservation of genetic resources of the species while protection of some disjunct-peripheral populations are also recommended for conserving rare alleles.  相似文献   

13.
Measuring levels of population genetic diversity is an important step for assessing the conservation status of rare or endangered plant species and implementing appropriate conservation strategies. Populations of Ribes multiflorum subsp. sandalioticum and R. sardoum, two endangered endemic species from Sardinia, representing the whole genus on the island, were investigated using ISSR and SSR markers to determine levels and structure of genetic variability in their natural populations. Results indicated medium to low genetic diversity at the population level: Nei's gene diversity for ISSR markers ranged from 0.0840 to 0.1316; the expected heterozygosity (HE) for SSR ranged from 0.4281 to 0.7012. In addition, only one remnant population of R. sardoum showed a high level of inbreeding, in accordance with its very small size. Regarding the structure of the six R. sandalioticum populations, both principal coordinates analysis (PCoA) and STRUCTURE analysis of ISSR and SSR data highlighted low population structure, although two populations appeared to be clearly distinct from the others. The genetic pattern of the two taxa associated with their different ecological positions indicated resilience of R. sandalioticum populations in fresh and humid habitats and uncertain future resistance for the residual R. sardoum population in xeric calcareous stands. Hence, this study highlights the importance of an integrated conservation approach (genetic plus in situ and ex situ conservation studies/measures) for activating management programmes in these endemic and threatened taxa that can be considered as crop wild relatives of cultivated Ribes species.  相似文献   

14.
SSR (simple sequence repeats) markers derived from ESTs (expressed sequence tags), commonly called EST‐SSRs or genic SSRs provide useful genetic markers for crop improvement. These are easy and economical to develop as by‐products of large‐scale EST resources that have become available as part of the functional genomic studies in many plant species. Here, we describe for the first time, nine genic‐SSRs of coffee that are developed from the microsatellite containing ESTs from a cDNA library of moisture‐stressed leaves of coffee variety, ‘CxR’ (a commercial interspecific hybrid between Coffea congensis and Coffea canephora). The markers show considerable allelic diversity with PIC values up to 0.70 and 0.75 for Coffea arabica and Coffea canephora, respectively, and robust cross‐species amplification in 16 other related taxa of coffee. The validation studies thus demonstrate the potential utility of the EST‐SSRs for genetic analysis of coffee germplasm.  相似文献   

15.

Background  

Simple Sequence Repeat (SSR) or microsatellite markers are valuable for genetic research. Experimental methods to develop SSR markers are laborious, time consuming and expensive. In silico approaches have become a practicable and relatively inexpensive alternative during the last decade, although testing putative SSR markers still is time consuming and expensive. In many species only a relatively small percentage of SSR markers turn out to be polymorphic. This is particularly true for markers derived from expressed sequence tags (ESTs). In EST databases a large redundancy of sequences is present, which may contain information on length-polymorphisms in the SSR they contain, and whether they have been derived from heterozygotes or from different genotypes. Up to now, although a number of programs have been developed to identify SSRs in EST sequences, no software can detect putatively polymorphic SSRs.  相似文献   

16.
A set of expressed sequence tag–simple sequence repeat (EST‐SSR) loci has been developed for Arabidopsis lyrata ssp. petraea. From 768 root cDNA clones, 126 microsatellites, including di‐, tri‐, tetra‐ and pentanucleotide repeat motifs were identified and primers were designed to 24 EST‐SSRs. Eleven loci were subsequently screened on 150 individuals sampled from five natural populations, which revealed three to nine alleles per locus (mean 5.36) and expected heterozygosity (HE) estimates ranging from 0.046 to 0.698. Significant deviations from random mating were observed at 10 EST‐SSR loci, likely due to inbreeding (global FIS = 0.151) and population structure (global FST = 0.246).  相似文献   

17.
Kantartzi SK  Ulloa M  Sacks E  Stewart JM 《Genetica》2009,136(1):141-147
The cultivated diploid, Gossypium arboreum L., (A genome) is an invaluable genetic resource for improving modern tetraploid cotton (G. hirsutum L. and G. barbadense L.) cultivars. The objective of this research is to select a set of informative and robust microsatellites for studying genetic relationships among accessions of geographically diverse G. arboreum cultivars. From more than 1,500 previously developed simple sequence repeat (SSR) markers, 115 genomic (BNL) and EST-derived (MUCS and MUSS) markers were used to evaluate the allelic diversity of a core panel of G. arboreum accessions. These SSR data enabled advanced genome analyses. A set of 25 SSRs were selected based both upon their high level of informativeness (PIC ≥ 0.50) and the production of clear PCR bands on agarose gels. Subsequently, 96 accessions representing a wide spectrum of diversity of G. arboreum cultivars were analyzed with these markers. The 25 SSR loci revealed 75 allelic variants (polymorphisms) ranging from 2 to 4 alleles per locus. The Neighborjoining (NJ) method, based on genetic dissimilarities, revealed that cultivars from geographically adjacent countries tend to cluster together. Outcomes of this research should be useful in decreasing redundancy of effort and in constructing a core collection of G. arboreum, important for efficient use of this genetic resource in cotton breeding.  相似文献   

18.
Twelve expressed sequence tags‐derived markers were isolated from Plasmopara halstedii (Oomycetes), the causal agent of sunflower downy mildew. A total of 25 single nucleotide polymorphisms and five indels were detected by single‐strand conformation polymorphism analysis and developed for high‐throughput genotyping of 32 isolates. There was a high level of genetic diversity (HE = 0.484). Observed heterozygosity ranged from 0 to 0.143 indicating that P. halstedii is probably a selfing species. These markers were also useful in detecting significant genetic variations among French populations (FST = 0.193) and between French and Russian populations (FST = 0.23). Cross‐amplification tests on three closely related species indicated that no loci amplified in other Oomycete species.  相似文献   

19.
New microsatellites markers [simple sequence repeat (SSR)] have been isolated from rose and integrated into an existing amplified fragment-length polymorphism genetic map. This new map was used to identify quantitative trait locus (QTL) controlling date of flowering and number of petals. From a rose bud expressed sequence tag (EST) database of 2,556 unigenes and a rose genomic library, 44 EST-SSRs and 20 genomic-SSR markers were developed, respectively. These new rose SSRs were used to expand genetic maps of the rose interspecific F1 progeny. In addition, SSRs from other Rosaceae genera were also tested in the mapping progeny. Genetic maps for the two parents of the progeny were constructed using pseudo-testcross mapping strategy. The maps consist of seven linkage groups of 105 markers covering 432 cM for the maternal map and 136 markers covering 438 cM for the paternal map. Homologous relationships among linkage groups between the maternal and paternal maps were established using SSR markers. Loci controlling flowering traits were localised on genetic maps as a major gene and QTL for the number of petals and a QTL for the blooming date. New SSR markers developed in this study will provide tools for the establishment of a consensus linkage map for roses that combine traits and markers in various rose genetic maps.  相似文献   

20.
A series of 320 mapped simple sequence repeats (SSRs) have been used to screen the allelic diversity of tetraploid Gossypium species. Fourty-seven genotypes were analyzed representing (i) the wide spectrum of diversity of the cultivated pool and of the primitive landraces of species G. hirsutum (‘marie-galante’, ‘punctatum’, ‘richmondi’, ‘morrilli’, ‘palmeri’, and ‘latifolium’, and ‘yucatanense’), and (ii) species G. barbadense, G. darwinii and G. tomentosum. The polymorphism of 201 SSR loci revealed 1128 allelic variants ranging from 3 to 17 per locus. Neighbor-joining (NJ) method based on genetic dissimilarities produced groupings consistent with the assignments of accessions both at species and at race level. Our data confirmed the proximity of the Galapagos endemic species G. darwinii to species G. barbadense. Within species G. hirsutum, and as compared to the other 6 races, race yucatanense appeared as the most distant from cultivated genotypes. Race yucatanense also exhibited the highest number of unique alleles. The important informative heterogeneity of the 201 SSR loci was exploited to select the most polymorphic ones that were assembled into three series of genome-wide (i.e. each homoeologous AD chromosome pair being equally represented) and mutliplexable (× 3) SSRs. Using one of these ‘genotyping set’, consisting of 39 SSRs (one 3-plex for each of the 13 AD chromosomes pairs) or 45 loci, we were able to assess the relationships between accessions and the topology in the genetic diversity sampled. Such genotyping set of highly informative SSR markers assembled in PCR-multiplex, while increasing genotyping throughput, will be applicable for molecular genetic diversity studies of large germplasm collections. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号