首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
王鑫  杨磊  赵倩  张钦弟 《生态学报》2020,40(8):2691-2697
植物功能性状可以响应生境的变化并决定生态系统的功能,探究植物功能性状间的关系及其随土壤有效水分梯度的变化规律,对认识不同水分条件下植被在群落水平碳水代谢关系和维持水分平衡的生理生态学机制具有重要意义。以甘肃定西典型半干旱黄土小流域草地群落为研究对象,采用排序分析和回归拟合方法,分析了30个代表性草地样地中7个植物功能性状加权均值对土壤有效水分的响应以及响应性状间的相关关系。结果显示:(1)7个性状中,除叶宽与土壤有效水分无明显相关外,叶长、株高、叶面积、比叶面积、叶厚和叶干物质含量均与土壤有效水分显著性相关,可识别为草地在群落水平对土壤水分的响应性状。(2)草地群落通过降低株高,减小叶长、叶面积和比叶面积,增加叶厚和叶干物质含量以适应土壤有效水分减少;其中叶干物质含量的解释度最大,是土壤水分的最优响应性状。(3)除叶厚与叶长无显著相关外,其余功能性状均存在显著相关,说明草地群落的功能性状在土壤水分梯度上已基本形成了一个相互权衡或协同变化的功能性状组合。  相似文献   

2.
研究草地植物功能性状变异对放牧干扰的响应机制,有助于解析草地生态系统群落构建和功能多样性维持机制及植物对环境的适应及权衡策略。以科尔沁沙地退化草地为对象,研究围封和放牧草地物种多种功能性状(植株高度、根系长度、叶面积、根面积、叶片干物质含量、地上干物质含量、根系干物质含量、比叶面积、比根长和根冠比)变异特征及其对放牧干扰的响应机制。结果表明: 退化草地物种种间性状变异明显高于种内变异,种间性状变异对总体变异的贡献率占比高达70.2%~95.1%,而种内变异仅为4.9%~29.8%,但群落构建中物种的种内变异仍不可忽视。放牧草地物种种间性状变异低于围封草地,且放牧草地种内变异增加而种间变异减小。放牧导致不耐牧的优良禾本科牧草叶面积和叶片干物质含量下降而比根长增加,但耐牧的杂类草则通过增加叶面积和叶片干物质含量并降低比根长来提高在群落中的优势地位。退化草地对放牧响应较为敏感的功能性状有叶面积、叶片干物质含量、比根长和比叶面积。植物叶片性状和根系性状自身及彼此间均呈显著正相关,但放牧会增强根系性状的协同效应而减弱叶片性状的协同效应。说明放牧会驱动植物个体和种群功能性状权衡策略发生改变,进而起到调控植物群落结构和功能的作用。  相似文献   

3.
放牧对草原植物功能性状影响研究进展   总被引:1,自引:0,他引:1  
植物功能性状的表达和植被环境适应性相关,植物功能性状之间的权衡变化体现了植物在放牧胁迫下资源的重新整合和获取。本文总结了放牧干扰下植物功能性状表达的差异性,着重将放牧干扰与植物功能性状相结合,介绍了植物功能性状的变异来源是植物遗传特征与环境过滤相互协调的结果,归纳了放牧对植物营养性状、繁殖性状的影响,以及植物可以通过调整生存和繁殖策略以适应放牧干扰。本文集中于放牧对植物种群、群落和生态系统的影响。不同放牧干扰下植物功能性状的表达具有差异性,因此植物功能性状可作为解释种群生长和繁殖、群落构建过程和生态系统功能的指标。为使植物功能性状的研究更好地服务于草地生态环境,可依据植物功能性状筛选合理的草地抗牧物种;依据草地植物种群的生活史特征,制定科学的放牧机制;以植株为整体综合考虑植物功能性状变化,提出放牧研究中植物功能性状的发展方向。  相似文献   

4.
准确预测异质性景观碳水通量的时空变化,对于综合理解气候变化和植被动态对景观和区域碳水循环的影响至关重要。本研究通过野外观测试验来探究草地斑块碳水通量的季节变化及其与非生物和生物因子之间的关系。在生长季通过密闭同化箱法测定了三个类型草地斑块的日间碳水通量(包括生态系统净交换、总生态系统生产力、生态系统呼吸和蒸散发),同时测定了关键植物性状指标,并计算性状加权平均值和功能分异度。研究结果表明,碳水通量的时间变化受气象因子、土壤因子和群落功能性状的影响。考虑植物功能性状加权平均值和功能分异度可以极大地提高景观尺度碳水通量变异的解释度。比叶面积和叶片δ13C含量是影响气体通量变化的重要性状指标。群落加权平均值对碳通量的预测能力优于功能分异度,而功能分异度对蒸散发的解释度更高。我们的研究结果表明,生物量比假说和互补效应假说互不排 斥,但两者对不同的生态系统过程的相对重要性不同,群落功能性状对半干旱草地碳水通量时空变化的机理解释和模型预测具有重要作用。  相似文献   

5.
草地生态系统服务功能分析及其评价指标体系   总被引:36,自引:3,他引:33  
草地生态系统服务功能是指草地生态系统及其生态过程所形成及所维持的人类赖以生存的自然环境条件与效用。根据最新的研究成果 ,结合草地生态系统提供服务的机制 ,将草地生态系统的服务功能划分为产品提供、调节功能、文化功能和支持功能四大类 ,其中 ,产品提供功能可分为畜牧业产品和植物资源产品两类 ,调节功能则包括气候调节、土壤C累积、水资源调节、侵蚀控制、空气质量调节、废弃物降解、营养物质循环 ;文化功能主要包括民族文化多样性和休闲旅游 ;支持功能则包括固沙改土及培肥地力和生境提供。在上述服务功能机制分析的基础上 ,构建了由 13个功能指标组成的草地生态系统服务功能评价指标体系。  相似文献   

6.
马乐  闫勇智  于佳伟  弓晓倩  李奉时  张庆 《生态学报》2023,43(20):8598-8607
沙地生态系统修复是恢复生态学研究的热点问题,适生植物筛选是修复的关键。植物功能性状反映了植物在不同环境中的生存策略,探究沙地植物功能性状及其与环境之间的关系,有助于筛选用于植被恢复的物种,为保护沙地生态系统提供理论依据。以毛乌素沙地为研究区,分析了1983-2015年间沙地典型飞播样地群落演替特征及其对环境因子的响应,建立基于10个植物功能性状的毛乌素沙地潜在种库,进一步筛选飞播恢复下沙地不同演替阶段的适生植物。研究表明:(1)飞播恢复下的毛乌素沙地植物群落分为三个演替阶段:固沙先锋物种群落、沙生植物为主的杂类草群落、中生植物为主的杂类草群落。(2)土壤因子是群落演替的主要驱动力,其中土壤全氮、土壤总有机碳、土壤硝态氮是影响群落演替的关键因素。(3)基于功能性状筛选出29种适生物种用于植被恢复,演替第一阶段可用雾冰藜、猪毛菜等,演替第二阶段可用拂子茅、无芒隐子草等,演替第三阶段可用草地风毛菊、猪毛蒿等。通过物种功能性状特征可以快速选择适合沙地退化生态系统修复的候选物种,为植被恢复提供了一定的理论支持。  相似文献   

7.
不同高寒生态系统植物光能利用效率及其环境影响   总被引:1,自引:0,他引:1  
光能利用效率是植物光合作用的重要指标,也是提高生态系统生产力的关键。本研究选择若尔盖高原这一生态敏感区,开展高寒草地和高寒湿地两个典型生态系统植物光能利用效率的观测,并分析环境因素对不同生态系统植物光能利用效率的影响。结果表明:高寒草地优势种植物垂穗披碱草(Elymus nutans)的净光合速率和光能利用效率均高于湿地优势种植物木里苔草(Carex muliensis),但差异不显著;对于两种生态系统共有种蕨麻(Potentilla anserina)来说,高寒湿地蕨麻的净光合速率和光能利用效率均高于草地蕨麻。逐步回归分析表明:两个生态系统的优势种光能利用效率受微气象因素和土壤因素的影响较大,而共有种蕨麻主要受微气象因素的影响;不同高寒生态系统植物的光能利用效率不同,优势种植物受环境影响因素较大,其中空气温度是影响高寒植物光能利用效率的最主要因素。  相似文献   

8.
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。  相似文献   

9.
荒漠植物是干旱区具有独特功能性状与资源权衡表征的地带性植物。植物功能性状及其多样性格局与资源权衡策略对群落结构优化和生态系统功能改善起着关键作用。该综述主要从荒漠植物组织、器官功能性状特征、功能性状权衡策略、功能多样性组分及测度3个方面梳理了荒漠植物性状权衡策略与功能多样性研究的进展脉络:1)荒漠植物独特的根、茎、叶功能性状特征揭露了植被对环境变化的响应以及对生态系统功能的影响,基于植物功能性状的研究有助于解决许多生态学的关键性问题;2)作为植物功能性状之间存在的最普遍的联系,权衡策略是经过自然筛选后形成的性状组合,关键性状已经被发掘并创造性的提出了"经济谱"概念。荒漠植物研究过程中,应分析其根、茎、叶的特征属性筛选关键性状,着眼于关键性状间及整株植物性状间的权衡策略;3)功能多样性是影响生态系统运行和发挥作用的生物多样性的重要组成部分,荒漠植物功能多样性能预测和指示群落中物种对于荒漠生态系统功能发挥和过程变化的影响。功能多样性的组分可以从不同角度反映群落的生态位占据状况和资源利用程度,指数的选择要体现在群落内部物种的功能特征之间的差异程度,同时要考虑这些物种自身在群落内的优势程度。本研究为未来荒漠植物功能性状及多样性研究梳理了一些新的研究方向和内容,期望为荒漠植物生理生态学研究的选题和发展提供一些新的思路。  相似文献   

10.
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂,有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地,通过群落调查,结合植物功能性状和土壤理化性质观测,研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明:1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著,其中,中度灌丛化草地的物种多样性和功能多样性较高,表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地,其原因主要是随着灌丛化程度加剧,群落内一/二年生草本植物显著增加,而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响,而是通过影响功能群组成、土壤理化性质和功能多样性,间接地影响生态系统功能;灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。  相似文献   

11.
Biodiversity is essential for maintaining the terrestrial ecosystem multifunctionality (EMF). Recent studies have revealed that the variations in terrestrial ecosystem functions are captured by three key axes: the maximum productivity, water use efficiency, and carbon use efficiency of the ecosystem. However, the role of biodiversity in supporting these three key axes has not yet been explored. In this study, we combined the (i) data collected from more than 840 vegetation plots across a large climatic gradient in China using standard protocols, (ii) data on plant traits and phylogenetic information for more than 2,500 plant species, and (iii) soil nutrient data measured in each plot. These data were used to systematically assess the contribution of environmental factors, species richness, functional and phylogenetic diversity, and community-weighted mean (CWM) and ecosystem traits (i.e., traits intensity normalized per unit land area) to EMF via hierarchical partitioning and Bayesian structural equation modeling. Multiple biodiversity attributes accounted for 70% of the influence of all the variables on EMF, and ecosystems with high functional diversity had high resource use efficiency. Our study is the first to systematically explore the role of different biodiversity attributes, including species richness, phylogenetic and functional diversity, and CWM and ecosystem traits, in the key axes of ecosystem functions. Our findings underscore that biodiversity conservation is critical for sustaining EMF and ultimately ensuring human well-being.  相似文献   

12.
Functional trait composition of plant communities has been proposed as a helpful key for understanding the mechanisms of biodiversity effects on ecosystem functioning. In this study, we applied a step‐wise modeling procedure to test the relative effects of taxonomic diversity, functional identity, and functional diversity on macrophytes community productivity along water depth gradient. We sampled 42 plots and 1513 individual plants and measured 16 functional traits and abundance of 17 macrophyte species. Results showed that there was a significant decrease in taxonomic diversity, functional identity (i.e., stem dry mass content, leaf [C] and leaf [N]), and functional diversity (i.e., floating leaf, mean Julian flowering date and rooting depth) with increasing water depth. For the multiple‐trait functional diversity (FD) indices, functional richness decreased, while functional divergence increased with water depth gradient. Macrophyte community productivity was strongly determined by functional trait composition within community, but not significantly affected by taxonomic diversity. Community‐weighted means (CWM) showed a two times higher explanatory power relative to FD indices in determining variations in community productivity. For nine of sixteen traits, CWM and FD showed significant correlations with community productivity, although the strength and direction of those relations depended on selected trait. Furthermore, functional composition in a community affected productivity through either additive or opposite effects of CWM and FD, depending on the particular traits being considered. Our results suggested both mechanisms of mass ratio and niche complementarity can operate simultaneously on variations in community productivity, and considering both CWM and FD would lead to a more profound understanding of traits–productivity relationships.  相似文献   

13.
The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field‐based studies have come up with nonconsistent patterns of biodiversity–ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed‐effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of maximum plant height, reflecting the importance of forest vertical stratification for diversity–carbon relationship. We therefore argue for stronger complementary effects that would be induced also by complementary light‐use efficiency of tree and species growing in the understory layer.  相似文献   

14.
The trait‐based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community‐weighted mean, CWM) and the dispersion of functional trait values (FDis). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (< 0.05). Soil fungal richness was positively associated with plant richness, biomass, CWM plant height, and soil gradient aggregated from the principal component analysis, but SEM results showed that plant richness and CWM plant height determined by soil properties were the main factors exerting direct effects. Soil gradient increased fungal richness through indirect effect on vegetation rather than direct effect. The negative indirect effect of FDis on soil fungal richness was through its effect on plant biomass. Our final SEM model based on plant functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.  相似文献   

15.
植物功能性状与森林生态系统服务的关系研究综述   总被引:1,自引:0,他引:1  
郑华  潘权  文志  杨延征 《生态学报》2021,41(20):7901-7912
植物功能性状途径是揭示生物多样性与生态系统服务关系的重要视角,尽管植物功能性状与生态系统服务的关系在单一地点的研究取得突出进展,但对于植物功能性状与生态系统服务的关系仍缺乏整体认识。以森林生态系统为对象,通过系统文献检索及筛选,收集了216篇文献,应用整合分析和二分网络分析等方法,探讨了植物功能性状对森林生态系统服务及其权衡与协同关系的影响。结果表明:植物叶片功能性状关注最多,占研究性状数量的48%,生态系统服务中关注最多是生物量、土壤肥力、病虫害控制和固碳服务;81.1%的植物功能性状与生态系统服务关系组表现为稳定的正向或负向关系,而关联植物功能性状多的生态系统服务(生物量、固碳服务、土壤水分、土壤肥力和病虫害控制)往往与植物功能性状表现为不稳定关系;森林生态系统中存在6组"植物功能性状-生态系统服务簇(简称"性状-服务簇"):水循环相关的性状-服务簇、土壤保持相关的性状-服务簇、物质生产相关的性状-服务簇、灾害控制相关的性状-服务簇、养分循环相关的性状-服务簇和授粉相关的性状-服务簇,揭示了各性状-服务簇内生态系统服务的权衡或协同关系以及与各性状-服务簇关系密切的植物功能性状。该研究从总体上阐明了植物功能性状与森林生态系统服务关系的研究重点和进展、揭示了植物功能性状对森林生态系统服务影响效应的方向和强度,可为深化森林生态系统服务形成机制认识以及协调生态系统服务权衡关系提供科学依据。  相似文献   

16.
《Plant Ecology & Diversity》2013,6(2-3):139-151
Background: There is an increasing consensus that ecosystem processes are governed by functional identity and trait variation rather than species richness. Despite its importance, the relative effect of relevant functional traits for carbon storage has remained mostly untested in different bioclimatic regions.

Aims: In this study, different components of functional diversity such as community-weighted means of trait values (CWM), functional trait diversity (Rao’s quadratic diversity), functional richness (FRi), functional evenness (FEv) and functional divergence (FDiv) were used to associate carbon content of above-ground biomass, litter and soil in four bioclimatic regions including warm and cold-steppe, semi-steppe rangelands and oak dry forest in the south-west of Iran.

Methods: Several key important traits highly associated with carbon storage including specific leaf area (SLA), height (H), leaf dry matter content, leaf nitrogen and phosphorus content (LNC and LPC), leaf longevity, wood specific gravity and life form were determined to quantify single and multiple traits that contribute to different components of plant functional diversity.

Results: The results showed that CWM of H, Chamaephyte life form, LNC and LPC were among the most important aspects of functional diversity that positively predicted carbon storage in above-ground biomass and soil. We also observed the negative association of carbon storage with FEv of LNC, Rao of LNC and FEv of multiple traits in the rangelands and the negative association of carbon storage with FDiv of SLA in the forest.

Conclusions: Our results indicate that different components of functional diversity are essential for a mechanistic understanding of the role of plant diversity for carbon storage. The negative associations between FDiv and FEv and carbon storage do not provide support for the complementarity niche hypothesis. Our results suggest that in the more functionally diverse ecosystems dominated by functionally important species with key traits, the so-called functional identity does indeed promote carbon storage, at least in these semi-arid ecosystems.  相似文献   

17.
Species-rich plant communities use nitrogen (N) more efficiently in grassland ecosystems; however, the role of plant functional diversity in affecting community level plant N-use has received little attention. We examined plant N content, stock and N-use efficiency at community-level along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune and grassland) in Horqin Sand Land, northern China. We used the functional trait-based approach to examine how plant functional diversity, reflected by the most abundant species’ traits (community-weighted mean, CWM) and the dispersion of functional trait values (FDis), affected N-use efficiency in sandy grassland restoration. We further used the structure equation model (SEM) to evaluate the direct or indirect effects of plant species richness, biomass, functional diversity and soil properties on community-level plant N-use efficiency. We found that plant biomass and its N stock increased following sandy grassland restoration, and there were lower plant N content and higher N-use efficiency in semi-fixed dune, fixed dune and grassland as compared with mobile dune. N-use efficiency was positively associated with plant species richness, biomass, CWM plant height, CWM leaf C:N, FDis and soil gradient, but SEM results showed that species richness, CWM leaf C:N, plant biomass and FDis controlled by soil properties were the main factors exerting direct effects. CWM plant height also had a positive effect on N-use efficiency through its indirect effect on plant biomass. Soil gradient increased N-use efficiency through an indirect effect on vegetation rather than a direct effect. Final SEM models based on different plant functional diversity explained over 74% of variances in N-use efficiency. Effects of plant functional diversity on N-use efficiency supported both the mass ratio hypothesis and the complementarity hypothesis. Our results clearly highlight the important role of plant functional diversity in mediating the effects of vegetation and soil properties on community level plant N-use in sandy grassland ecosystems.  相似文献   

18.
Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipulated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pollinator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship.  相似文献   

19.
In the past two decades, a large number of studies have investigated the relationship between biodiversity and ecosystem functioning, most of which focussed on a limited set of ecosystem variables. The Jena Experiment was set up in 2002 to investigate the effects of plant diversity on element cycling and trophic interactions, using a multi-disciplinary approach. Here, we review the results of 15 years of research in the Jena Experiment, focussing on the effects of manipulating plant species richness and plant functional richness. With more than 85,000 measures taken from the plant diversity plots, the Jena Experiment has allowed answering fundamental questions important for functional biodiversity research.First, the question was how general the effect of plant species richness is, regarding the many different processes that take place in an ecosystem. About 45% of different types of ecosystem processes measured in the ‘main experiment’, where plant species richness ranged from 1 to 60 species, were significantly affected by plant species richness, providing strong support for the view that biodiversity is a significant driver of ecosystem functioning. Many measures were not saturating at the 60-species level, but increased linearly with the logarithm of species richness. There was, however, great variability in the strength of response among different processes. One striking pattern was that many processes, in particular belowground processes, took several years to respond to the manipulation of plant species richness, showing that biodiversity experiments have to be long-term, to distinguish trends from transitory patterns. In addition, the results from the Jena Experiment provide further evidence that diversity begets stability, for example stability against invasion of plant species, but unexpectedly some results also suggested the opposite, e.g. when plant communities experience severe perturbations or elevated resource availability. This highlights the need to revisit diversity–stability theory.Second, we explored whether individual plant species or individual plant functional groups, or biodiversity itself is more important for ecosystem functioning, in particular biomass production. We found strong effects of individual species and plant functional groups on biomass production, yet these effects mostly occurred in addition to, but not instead of, effects of plant species richness.Third, the Jena Experiment assessed the effect of diversity on multitrophic interactions. The diversity of most organisms responded positively to increases in plant species richness, and the effect was stronger for above- than for belowground organisms, and stronger for herbivores than for carnivores or detritivores. Thus, diversity begets diversity. In addition, the effect on organismic diversity was stronger than the effect on species abundances.Fourth, the Jena Experiment aimed to assess the effect of diversity on N, P and C cycling and the water balance of the plots, separating between element input into the ecosystem, element turnover, element stocks, and output from the ecosystem. While inputs were generally less affected by plant species richness, measures of element stocks, turnover and output were often positively affected by plant diversity, e.g. carbon storage strongly increased with increasing plant species richness. Variables of the N cycle responded less strongly to plant species richness than variables of the C cycle.Fifth, plant traits are often used to unravel mechanisms underlying the biodiversity–ecosystem functioning relationship. In the Jena Experiment, most investigated plant traits, both above- and belowground, were plastic and trait expression depended on plant diversity in a complex way, suggesting limitation to using database traits for linking plant traits to particular functions.Sixth, plant diversity effects on ecosystem processes are often caused by plant diversity effects on species interactions. Analyses in the Jena Experiment including structural equation modelling suggest complex interactions that changed with diversity, e.g. soil carbon storage and greenhouse gas emission were affected by changes in the composition and activity of the belowground microbial community. Manipulation experiments, in which particular organisms, e.g. belowground invertebrates, were excluded from plots in split-plot experiments, supported the important role of the biotic component for element and water fluxes.Seventh, the Jena Experiment aimed to put the results into the context of agricultural practices in managed grasslands. The effect of increasing plant species richness from 1 to 16 species on plant biomass was, in absolute terms, as strong as the effect of a more intensive grassland management, using fertiliser and increasing mowing frequency. Potential bioenergy production from high-diversity plots was similar to that of conventionally used energy crops. These results suggest that diverse ‘High Nature Value Grasslands’ are multifunctional and can deliver a range of ecosystem services including production-related services.A final task was to assess the importance of potential artefacts in biodiversity–ecosystem functioning relationships, caused by the weeding of the plant community to maintain plant species composition. While the effort (in hours) needed to weed a plot was often negatively related to plant species richness, species richness still affected the majority of ecosystem variables. Weeding also did not negatively affect monoculture performance; rather, monocultures deteriorated over time for a number of biological reasons, as shown in plant-soil feedback experiments.To summarize, the Jena Experiment has allowed for a comprehensive analysis of the functional role of biodiversity in an ecosystem. A main challenge for future biodiversity research is to increase our mechanistic understanding of why the magnitude of biodiversity effects differs among processes and contexts. It is likely that there will be no simple answer. For example, among the multitude of mechanisms suggested to underlie the positive plant species richness effect on biomass, some have received limited support in the Jena Experiment, such as vertical root niche partitioning. However, others could not be rejected in targeted analyses. Thus, from the current results in the Jena Experiment, it seems likely that the positive biodiversity effect results from several mechanisms acting simultaneously in more diverse communities, such as reduced pathogen attack, the presence of more plant growth promoting organisms, less seed limitation, and increased trait differences leading to complementarity in resource uptake. Distinguishing between different mechanisms requires careful testing of competing hypotheses. Biodiversity research has matured such that predictive approaches testing particular mechanisms are now possible.  相似文献   

20.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号