首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ma LC  Wang YR  Liu ZP 《遗传》2012,34(5):621-634
蒺藜苜蓿(Medicago truncatula G)花器官特异表达基因是参与其花器官形成与发育的重要基因。筛选蒺藜苜蓿的花器官特异表达基因,寻找这类基因在其他模式植物中的直系同源基因,并将其表达模式在不同植物间进行比较,有利于深入的理解这类基因在蒺藜苜蓿花器官发育中的功能。根据蒺藜苜蓿表达谱,并以其PISTILLAZA(PI)基因为模板,文章筛选了97个蒺藜苜蓿花器官特异表达基因(Ratio≥10,且Z≥7.9).通过同源比对,确定了这类基因在拟南芥(Arabidopsis thaliana L.)、大豆(Glycinemax L.)、百脉根(Lotusjaponicus L.)和水稻(Oryzasativa L.)中的直系同源基因。对这类基因在5种植物中的表达量、表达部位和功能进行比较,发现进化关系较近的植物,直系同源基因的表达变异较小,而进化关系较远的植物,直系同源基因的表达变异较大。进一步对表达分化较大的直系同源基因进行启动子分析,发现不同植物中直系同源基因表达模式的变化与启动子中调控元件的特性有关。  相似文献   

2.
马利超  王彦荣  刘志鹏 《遗传》2012,34(5):621-634
蒺藜苜蓿(Medicago truncatula G.)花器官特异表达基因是参与其花器官形成与发育的重要基因。筛选蒺藜苜蓿的花器官特异表达基因, 寻找这类基因在其他模式植物中的直系同源基因, 并将其表达模式在不同植物间进行比较, 有利于深入的理解这类基因在蒺藜苜蓿花器官发育中的功能。根据蒺藜苜蓿表达谱, 并以其PISTILLATA(PI)基因为模板, 文章筛选了97个蒺藜苜蓿花器官特异表达基因(Ratio≥10, 且Z≥7.9)。通过同源比对, 确定了这类基因在拟南芥(Arabidopsis thaliana L.)、大豆(Glycine max L.)、百脉根(Lotus japonicus L.)和水稻(Oryza sativa L.)中的直系同源基因。对这类基因在5种植物中的表达量、表达部位和功能进行比较, 发现进化关系较近的植物, 直系同源基因的表达变异较小, 而进化关系较远的植物, 直系同源基因的表达变异较大。进一步对表达分化较大的直系同源基因进行启动子分析, 发现不同植物中直系同源基因表达模式的变化与启动子中调控元件的特性有关。  相似文献   

3.
LBD是植物中所特有的转录因子基因家族,在调控植物侧生组织发育、营养代谢以及响应逆境胁迫等方面具有重要作用。该研究利用生物信息学手段,从全基因组水平筛选和鉴定了蒺藜苜蓿LBD基因家族,并对基因结构、系统进化、进化压力、保守域、染色体定位以及基因表达模式等进行了分析。研究结果共鉴定出2类5亚类共计56个蒺藜苜蓿LBD家族基因,在8条染色体上均有分布,但分布不均匀。该家族成员外显子数目都不超过2个,结构简单,基因间在进化时存在负向选择作用。基因表达模式分析发现,该家族成员的表达具有一定的时空特异性,并受干旱和氮素调控。该研究结果对蒺藜苜蓿LBD基因功能研究及进化分析具有重要的意义。  相似文献   

4.
蒺藜苜蓿全基因组中WRKY转录因子的鉴定与分析   总被引:2,自引:0,他引:2  
宋辉  南志标 《遗传》2014,36(2):152-168
WRKY基因家族是植物基因组内一类重要的转录因子, 参与植物许多生理生化过程, 如植物发育、代谢以及生物和非生物胁迫。目前, 已在多种植物中鉴定出WRKY基因家族, 但是关于蒺藜苜蓿(Medicago truncatula L.) WRKY基因家族的系统分析鲜有报道。文章利用生物信息学方法, 从蒺藜苜蓿全基因组中共鉴定出93个WRKY基因, 包括81个标准的WRKY基因(19个Ⅰ型基因, 49个Ⅱ型基因以及13个Ⅲ型基因)和12个非标准类型的WRKY基因。对这些WRKY基因进行了基因重复、染色体定位、基因结构、保守基序和系统进化等方面的分析。蒺藜苜蓿WRKY基因家族中最近共发生了11次基因重复事件, 共涉及24个基因, 占全部WRKY基因的26%。染色体物理定位分析表明, 蒺藜苜蓿WRKY基因在染色体上呈不均匀分布, 存在6个基因簇。对WRKY Ⅲ型基因的进化分析表明, 它们在长期的进化过程中受纯化选择压力。  相似文献   

5.
蛋白质磷酸化是所有真核生物中都存在的重要信号传导机制,在生命过程的多个基础性环节,包括细胞分裂、分化、凋亡等,都起着中心的调控作用。14-3-3蛋白是在所有真核生物中都存在的,识别和调控磷酸化蛋白质活性,在磷酸化信号传导网络中是一个基础性的中心蛋白。我们筛选鉴定了蒺藜苜蓿全基因组中和天蓝苜蓿叶片转录组中的14-3-3基因,并对这些基因的结构、染色体定位、进化和在蒺藜苜蓿各个器官及不同胁迫处理下的表达情况进行分析,推测各个基因可能的功能。从蒺藜苜蓿的基因组,鉴定出11个14-3-3基因,这些基因在大豆中均存在直系同源基因。其中10个基因有基因芯片的表达证据。从天蓝苜蓿的叶片转录组中,筛选鉴定出6个14-3-3基因。蒺藜苜蓿14-3-3基因在各个组织和器官中特异性的表达,并可响应外界生物和非生物胁迫。本研究为进一步阐明蒺藜苜蓿中14-3-3基因铺平了道路,指明了方向。  相似文献   

6.
LBD基因家族是植物所特有的一类转录因子,在植物生长发育过程中起到非常重要的作用。本研究利用生物信息学方法,从萝卜基因组中鉴定出分布于9条染色体上的59个LBD基因。该家族成员结构比较简单,内含子数均不超过3个。萝卜LBD基因可分为两大类,分别包含50个和9个成员。它们在染色体上的分布不均匀,1号染色体上基因数目最多,有18个,而7号和8号染色体分别仅有1个LBD基因。对它们在不同组织和发育时期的表达模式研究发现,该基因家族具有一定的时空表达特异性,预测其参与萝卜不同的发育过程。本研究为萝卜LBD基因家族的功能分析奠定了基础。  相似文献   

7.
棉花YABBY基因家族的全基因组分析   总被引:1,自引:0,他引:1  
YABBY基因家族属于锌指蛋白超家族(Zinc finger super-family)的亚家族,在调控植物叶和花器官发育过程中起着重要的作用。从陆地棉标准系TM-1(Gossypium hirsutum L.acc.TM-1)基因组中鉴定到23个YABBY基因家族成员,具有不同的亚细胞定位;这些基因分布在16条染色体和1条Scaffold上,且有9对共线性基因;棉花的YABBY基因家族分为4个亚组,每个亚组都有与拟南芥同源的基因,且每个亚组成员间具有相似的基序类型和排列顺序;组织表达分析表明,TM-1全基因组中的23个YABBY基因家族成员具有较为广泛的组织表达类型。所有YABBY基因家族成员在花、蕾和茎端分生组织中表达。  相似文献   

8.
纪剑辉  周颖君  吴贺贺  杨立明 《遗传》2015,37(12):1228-1241
Trihelix转录因子家族在植物生长发育以及响应逆境胁迫等方面发挥着重要作用,但目前基于水稻全基因组水平鉴定和分析该基因家族的研究尚未见相关报道。本文利用生物信息学方法在水稻基因组数据库中鉴定到Trihelix家族成员31个,序列聚类和功能结构域分析发现该家族均含有高度保守的、特征性的Trihelix结构域;根据亲缘关系远近和结构域特点,将其分为5个亚家族(Ⅰ~Ⅴ)。通过与拟南芥、二穗短炳草和高粱中Trihelix家族的聚类分析发现,这4个物种中Trihelix家族的分类相一致,但每个物种均含有不同亚家族的成员,表明该基因家族的分化早于物种的分化。基于MEME程序分析水稻Trihelix转录因子家族的保守基序与聚类分析结果具有较高的一致性。染色体区段复制分析表明,部分Trihelix家族成员在水稻以及水稻与其他物种之间存在种内和种间的染色体区段复制;生物芯片数据分析发现,Trihelix基因家族在水稻不同组织中、以及对6种不同植物激素的响应呈现多样化的表达谱。采用RiceFREND在线数据库分析发现,水稻Trihelix转录因子家族的20个成员与其他蛋白存在互作关系。本研究结果初步明确了水稻Trihelix转录因子家族的进化特点、染色体分布、染色体区段复制关系、组织表达、激素应答,以及该家族蛋白与其他蛋白质的互作情况,为进一步揭示Trihelix转录因子家族的分子进化规律和生物学功能奠定了基础。  相似文献   

9.
MADS-box基因家族参与调控开花时间、花器官分化、根系生长、分生组织分化、子房和配子发育、果实膨大及衰老等植物生长发育的重要过程。基于甘蓝型油菜(Brassica napus)基因组测序数据,利用生物信息学方法对甘蓝型油菜MADS-box基因家族进行鉴定和注释及基因结构与系统进化分析。结果显示,在甘蓝型油菜中鉴定出307个MADS-box基因家族成员,根据进化关系可将其分为两大类型,I型(M-type)包含α、β、γ三个亚家族,II型(MIKC-type)包括MIKCC和MIKC*两个亚家族,MIKCC可进一步分为13个小类;甘蓝型油菜A基因组染色体上分布的MADS-box基因多于C基因组。在基因结构上,MIKC-type亚家族基因序列普遍比M-type长且含有较多的外显子;M-type亚家族蛋白序列中的motif数量为2–5个,MIKC-type亚家族蛋白序列中平均含有7个motif。拟南芥(Arabidopsis thaliana)与甘蓝型油菜MADS-box基因共线性分析结果显示,全基因组复制事件对MADS-box基因家族尤其是MIKC亚家族的扩张起重要作用;MIKC亚家族基因在进化过程中受到的选择压力约为M-type的2倍,这表明MIKC-type亚家族在进化过程中被选择性保留。  相似文献   

10.
在猕猴桃全基因组范围内鉴定生长素/吲哚乙酸(Aux/IAA)基因家族,利用生物信息学方法分析其理化性质、结构特征及共线性关系等,并采用实时荧光定量PCR分析Aux/IAA家族基因在不同组织及部分家族成员在外源激素胁迫下的表达模式,为揭示该家族基因在猕猴桃发育过程中的功能奠定基础。结果表明:(1)猕猴桃基因组含有50个Aux/IAA家族基因,编码氨基酸序列介于125~391 aa,蛋白分子量介于14.06~42.48 kD,等电点介于4.33~9.51;Aux/IAA家族基因不均匀的分布于21条不同染色体上,且分布最多的23号染色体上含有11个基因;聚类分析将其分为9个亚族。(2)大部分Aux/IAA家族基因含有4个不同的保守结构域,多数成员均含有Ⅱ、Ⅲ和Ⅳ结构域,部分基因缺失Ⅰ结构域;基因结构分析表明该家族基因包含1~5个内含子;基因组内序列分析发现该家族基因含有23对重复基因对,包括20对片段重复和3对串联重复;与拟南芥的组间共线性分析发现有36个基因与拟南芥基因存在共线性关系。(3)亚细胞预测显示该家族基因大部分定位于细胞核;启动子顺式作用元件分析发现该家族启动子包含光、激素以及响应生物与非生物胁迫等相关作用元件。(4)实时荧光定量PCR分析表明,Aux/IAA家族基因有组织表达特异性,各成员对外源激素响应的时间和强度不同,绝大多数基因在激素处理的早期下调表达,而AcIAA1a和AcIAA18a相对表达量呈现上调表达,响应模式的差异也说明了Aux/IAA家族各个基因在调控猕猴桃发育过程中功能上的差异性。研究认为,猕猴桃Aux/IAA家族基因具有功能多样性,且存在基因复制现象的基因部分表现出组织表达模式相似性,推测在功能上可能有冗余,在进化过程中该基因可能受到环境胁迫而导致序列的缺失或基因复制。  相似文献   

11.
12.
13.
14.
15.
Phytohormones are involved in the organogenesis of legume root nodules. The source of the auxin indole-3-acetic acid (IAA) in nodules has not been clearly determined. We studied the enzyme aldehyde oxidase (AO; EC 1.2.3.1), that catalyzes the last step of IAA biosynthesis in plants, in the nodules of Lupinus albus and Medicago truncatula. Primordia and young lupin nodules and mature M. truncatula nodules showed AO activity bands after native polyacrylamide gel electrophoresis. Gel activity analyses using indole-3-aldehyde as substrate indicated that the nodules of white lupin and M. truncatula have the capability to synthesize IAA via the indole-3-pyruvic acid pathway. Immunolocalization and in situ hybridization experiments revealed that AO is preferentially expressed in the meristematic and the invasion zones in Medicago nodules and in the lateral meristematic zone of Lupinus nodules. High IAA immunolabeling was also detected in the meristematic and invasion zones. Low expression levels and no AO activity were detected in lupin Fix- nodules that displayed restricted growth and early senescence. We propose that local synthesis of IAA in the root nodule meristem and modulation of AO expression and activity are involved in regulation of nodule development.  相似文献   

16.
NORK in legumes encodes a receptor-like kinase that is required for Nod factor signaling and root nodule development. Using Medicago truncatula NORK as bait in a yeast two-hybrid assay, we identified 3-hydroxy-3-methylglutaryl CoA reductase 1 (Mt HMGR1) as a NORK interacting partner. HMGR1 belongs to a multigene family in M. truncatula, and different HMGR isoforms are key enzymes in the mevalonate biosynthetic pathway leading to the production of a diverse array of isoprenoid compounds. Testing other HMGR members revealed a specific interaction between NORK and HMGR1. Mutagenesis and deletion analysis showed that this interaction requires the cytosolic active kinase domain of NORK and the cytosolic catalytic domain of HMGR1. NORK homologs from Lotus japonicus and Sesbania rostrata also interacted with Mt HMGR1, but homologous nonsymbiotic kinases of M. truncatula did not. Pharmacological inhibition of HMGR activities decreased nodule number and delayed nodulation, supporting the importance of the mevalonate pathway in symbiotic development. Decreasing HMGR1 expression in M. truncatula transgenic roots by RNA interference led to a dramatic decrease in nodulation, confirming that HMGR1 is essential for nodule development. Recruitment of HMGR1 by NORK could be required for production of specific isoprenoid compounds, such as cytokinins, phytosteroids, or isoprenoid moieties involved in modification of signaling proteins.  相似文献   

17.
Legume root nodule nitrogen-fixing activity is severely affected by osmotic stress. Proline accumulation has been shown to induce tolerance to salt stress, and transgenic plants over-expressing Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), which accumulates high levels of proline, display enhanced osmotolerance. Here, we transformed the model legume Medicago truncatula with the P5CS gene from Vigna aconitifolia, and nodule activity was evaluated under osmotic stress in transgenic plants that showed high proline accumulation levels. Nitrogen fixation was significantly less affected by salt treatment compared to wild-type (WT) plants. To our knowledge, this is the first time that transgenic legumes have been produced that display nitrogen-fixing activity with enhanced tolerance to osmotic stress. We studied the expression of M. truncatula proline-related endogenous genes M. truncatulaDelta(1)-pyrroline-5-carboxylate synthetase 1 (MtP5CS1), M. truncatulaDelta(1)-pyrroline-5-carboxylate synthetase 2 (MtP5CS2), M. truncatula ornithine delta-aminotransferase (MtOAT), M. truncatula proline dehydrogenase (MtProDH) and a proline transporter gene in both WT and transgenic plants. Our results indicate that proline metabolism is finely regulated in response to osmotic stress in an organ-specific manner. The transgenic model allowed us to analyse some of the biochemical and molecular mechanisms that are activated in the nodule in response to high salt conditions, and to ascertain the essential role of proline in the maintenance of nitrogen-fixing activity under osmotic stress.  相似文献   

18.
Legume rhizobia symbiotic nitrogen (N2) fixation plays a critical role in sustainable nitrogen management in agriculture and in the Earth's nitrogen cycle. Signaling between rhizobia and legumes initiates development of a unique plant organ, the root nodule, where bacteria undergo endocytosis and become surrounded by a plant membrane to form a symbiosome. Between this membrane and the encased bacteria exists a matrix-filled space (the symbiosome space) that is thought to contain a mixture of plant- and bacteria-derived proteins. Maintenance of the symbiosis state requires continuous communication between the plant and bacterial partners. Here, we show in the model legume Medicago truncatula that a novel family of six calmodulin-like proteins (CaMLs), expressed specifically in root nodules, are localized within the symbiosome space. All six nodule-specific CaML genes are clustered in the M. truncatula genome, along with two other nodule-specific genes, nodulin-22 and nodulin-25. Sequence comparisons and phylogenetic analysis suggest that an unequal recombination event occurred between nodulin-25 and a nearby calmodulin, which gave rise to the first CaML, and the gene family evolved by tandem duplication and divergence. The data provide striking evidence for the recruitment of a ubiquitous Ca(2+)-binding gene for symbiotic purposes.  相似文献   

19.
The glutamine synthetase (GS) gene family of Medicago truncatula Gaertn. contains three genes related to cytosolic GS (MtGSa, MtGSb, and MtGSc), although one of these (MtGSc) appears not to be expressed. Sequence analysis suggests that the genes are more highly conserved interspecifically rather than intraspecifically: MtGSa and MtGSb are more similar to their homologs in Medicago sativa and Pisum sativum than to each other. Studies in which gene-specific probes are used show that both MtGSa and MtGSb are induced during symbiotic root nodule development, although not coordinately. MtGSa is the most highly expressed GS gene in nodules but is also expressed to lower extents in a variety of other organs. MtGSb shows higher levels of expression in roots and the photosynthetic cotyledons of seedlings than in nodules or other organs. In roots, both genes are expressed in the absence of an exogenous nitrogen source. However the addition of nitrate leads to a short-term, 2- to 3-fold increase in the abundance of both mRNAs, and the addition of ammonium leads to a 2-fold increase in MtGSb mRNA. The nitrogen supply, therefore, influences the expression of the two genes in roots, but it is clearly not the major effector of their expression. In the discussion section, the expression of the GS gene family of the model legume M. truncatula is compared to those of other leguminous plants.  相似文献   

20.
Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号