首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The majority of plant disease-resistance genes (R-genes) isolated so far encode a predicted nucleotide-binding site (NBS) domain. NBS domains related to R-genes show a highly conserved backbone of amino acid motifs, which makes it possible to isolate resistance gene analogues (RGAs) by PCR with degenerate primers. Multiple combinations of primers with low degeneracy, designed from two conserved motifs in the NBS regions of R-genes of various plants, were used on genomic DNA from coffee trees, an important perennial tropical crop. Nine distinct classes of RGAs of the NBS-like type, representing a highly diverse sample, were isolated from Coffea arabica and C. canephora species. The analysis of one coffee RGA family suggested point mutations as the primary source of diversity. With one exception, coffee RGA families appeared to be closely related in sequence to at least one cloned R-gene. In addition, deduced amino acid sequences of coffee RGAs were identified that showed strong sequence similarity to almost all known non-TIR (Toll/Interleukin 1 Receptor)-type R-genes. The high degree of similarity between particular coffee RGAs and R-genes isolated from other angiosperm species, such as Arabidopsis, tomato and rice, indicates an ancestral relationship and the existence of common ancestors. The data obtained from coffee species suggests that the evolution of NBS-encoding sequences involves the gradual accumulation of mutations and slow rates of divergence within distinct R-gene families, rather than being a rapid process. Functional inferences drawn from the suggested pattern of evolution of NBS-type R-genes is also discussed.  相似文献   

2.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

3.
Whereas resistance genes (R-genes) governing qualitative resistance have been isolated and characterized, the biological roles of genes governing quantitative resistance (quantitative trait loci, QTLs) are still unknown. We hypothesized that genes at QTLs could share homologies with cloned R-genes. We used a PCR-based approach to isolate R-gene analogs (RGAs) with consensus primers corresponding with conserved domains of cloned R-genes: (i) the nucleotide binding site (NBS) and hydrophobic domain, and (ii) the kinase domain. PCR-amplified fragments were sequenced and mapped on a pepper intraspecific map. NBS-containing sequences of pepper, most similar to the N gene of tobacco, were classified into seven families and all mapped in a unique region covering 64 cM on the Noir chromosome. Kinase domain containing sequences and cloned R-gene homologs (Pto, Fen, Cf-2) were mapped on four different linkage groups. A QTL involved in partial resistance to cucumber mosaic virus (CMV) with an additive effect was closely linked or allelic to one NBS-type family. QTLs with epistatic effects were also detected at several RGA loci. The colocalizations between NBS-containing sequences and resistance QTLs suggest that the mechanisms of qualitative and quantitative resistance may be similar in some cases.  相似文献   

4.
A composite linkage map was constructed based on two interspecific recombinant inbred line populations derived from crosses between Cicer arietinum (ILC72 and ICCL81001) and Cicer reticulatum (Cr5-10 or Cr5-9). These mapping populations segregate for resistance to ascochyta blight (caused by Ascochyta rabiei), fusarium wilt (caused by Fusarium oxysporum f. sp. ciceris) and rust (caused by Uromyces ciceris-arietini). The presence of single nucleotide polymorphisms in ten resistance gene analogs (RGAs) previously isolated and characterized was exploited. Six out of the ten RGAs were novel sequences. In addition, classes RGA05, RGA06, RGA07, RGA08, RGA09 and RGA10 were considerate putatively functional since they matched with several legume expressed sequences tags (ESTs) obtained under infection conditions. Seven RGA PCR-based markers (5 CAPS and 2 dCAPS) were developed and successfully genotyped in the two progenies. Six of them have been mapped in different linkage groups where major quantitative trait loci conferring resistance to ascochyta blight and fusarium wilt have been reported. Genomic locations of RGAs were compared with those of known Cicer R-genes and previously mapped RGAs. Association was detected between RGA05 and genes controlling resistance to fusarium wilt caused by races 0 and 5.  相似文献   

5.
Most cloned plant disease resistance genes (R-genes) code for proteins belonging to the nucleotide binding site (NBS) leucine-rich repeat (LRR) superfamily. NBS-LRRs can be divided into two classes based on the presence of a TIR domain (Toll and interleukin receptor-like sequence) or a coiled coil motif (nonTIR) in their N-terminus. We used conserved motifs specific to nonTIR-NBS-LRR sequences in a targeted PCR approach to generate nearly 50 genomic soybean sequences with strong homology to known resistance gene analogs (RGAs) of the nonTIR class. Phylogenetic analysis classified these sequences into four main subclasses. A representative clone from each subclass was used for genetic mapping, bacterial artificial chromosome (BAC) library screening, and construction of RGA-containing BAC contigs. Of the 14 RGAs that could be mapped genetically, 12 localized to a 25-cM region of soybean linkage group F already known to contain several classical disease resistance loci. A majority of the genomic region encompassing the RGAs was physically isolated in eight BAC contigs, together spanning more than 1 Mb of genomic sequence with at least 12 RGA copies. Phylogenetic and sequence analysis, together with genetic and physical mapping, provided insights into the genome organization and evolution of this large cluster of soybean RGAs. Received: 8 May 2001 / Accepted: 30 June 2001  相似文献   

6.
Genomic DNA sequences sharing homology with the NBS-LRR (nucleotide binding site-leucine-rich repeat) resistance genes were isolated and cloned from apricot (Prunus armeniaca L.) using a PCR approach with degenerate primers designed from conserved regions of the NBS domain. Restriction digestion and sequence analyses of the amplified fragments led to the identification of 43 unique amino acid sequences grouped into six families of resistance gene analogs (RGAs). All of the RGAs identified belong to the Toll-Interleukin receptor (TIR) group of the plant disease resistance genes (R-genes). RGA-specific primers based on non-conserved regions of the NBS domain were developed from the consensus sequences of each RGA family. These primers were used to develop amplified fragment length polymorphism (AFLP)-RGA markers by means of an AFLP-modified procedure where one standard primer is substituted by an RGA-specific primer. Using this method, 27 polymorphic markers, six of which shared homology with the TIR class of the NBS-LRR R-genes, were obtained from 17 different primer combinations. Of these 27 markers, 16 mapped in an apricot genetic map previously constructed from the self-pollination of the cultivar Lito. The development of AFLP-RGA markers may prove to be useful for marker-assisted selection and map-based cloning of R-genes in apricot.  相似文献   

7.
We amplified resistance gene analogues (RGAs) from the genomic DNA of 10 rice lines having varying degree of resistance to Magnaporthe grisea by using degenerate primers and various RGAs were mapped in silico on different rice chromosomes. The amplified products were grouped into 3–8 restriction fragment length polymorphic classes by using Mbo1 and Alu1 restriction enzymes. Of 98 RGAs obtained in this study, 65 RGA clones showed more than 95% homology with various RGAs sequences present in the GenBank. Phylogenetic analysis of these RGAs formed 11 groups. Using sequence homology approach, RGAs isolated in this study were physically mapped on 23 loci on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 and 12. Twenty RGAs were mapped near to the chromosomal regions containing known genes/QTLs for rice blast, bacterial leaf blight and sheath blight resistance. Thirty‐nine RGA sequences also contained open reading frame representing signature of potential disease resistance genes.  相似文献   

8.
Resistance gene analogues (RGAs) of Cicer were isolated by different PCR approaches and mapped in an inter-specific cross segregating for fusarium wilt by RFLP and CAPS analysis. Initially, two pairs of degenerate primers targeting sequences encoded at nucleotide-binding sites (NBS), which are conserved in plant disease resistance genes such as RPS2, L6 and N, were selected for amplification. Cloning and sequence analysis of amplified products from C. arietinum DNA revealed eight different RGAs. Additionally, five RGAs were identified after characterisation of the presumptive RGA alleles from C. reticulatum. Therefore, a total of 13 different RGAs were isolated from Cicer and classified through pair-wise comparison into nine distinct classes with sequence similarities below a 68% amino acid identity threshold. Sequence comparison of seven RGA alleles of C. arietinum and C. reticulatum revealed polymorphisms in four RGAs with identical numbers of synonymous and non-synonymous substitutions. An NlaIII site, unique in the RGA-A allele of C. arietinum, was exploited for CAPS analysis. Genomic organisation and map position of the NBS-LRR candidate resistance genes was probed by RFLP analysis. Both single-copy as well as multi-copy sequence families were present for the selected RGAs, which represented eight different classes. Five RGAs were mapped in an inter-specific population segregating for three race-specific Fusarium resistances. All RGAs mapped to four of the previously established eight linkage groups for chickpea. Two NBS-LRR clusters were identified that could not be resolved in our mapping population. One of these clusters, which is characterised by RFLP probe CaRGA-D, mapped to the linkage group harbouring two of three Fusarium resistance genes characterised in the inter-specific population. Our study provides a starting point for the characterisation and genetic mapping of candidate resistance genes in Cicer that is useful for marker-assisted selection and as a pool for resistance genes of Cicer.  相似文献   

9.
NBS类植物抗病基因保守结构域的克隆为利用简并引物扩增抗病基因同源序列提供了可能.根据抗病基因Gro1-4、Gpa2、N等的P-loop和GLPL保守结构域设计简并引物,分离甘薯近缘野生种三浅裂野牵牛NBS类型抗病基因同源序列,共获得6条相关序列,核苷酸序列的相似性为48%~97%,推测氨基酸序列的相似性在25.2%~95.1%之间.系统进化分析表明,6条三浅裂野牵牛RGA序列可分为2个不同的类群:TIR-NBS和non-TIR-NBS.三浅裂野牵牛RGA序列与源自甘薯的RGA序列有很高的相似性,这在一定程度上反映了三浅裂野牵牛与甘薯之间的亲缘关系.分离的6条RGA序列分别命名为ItRGA1~ItRGA6,GenBank登录号分别为DQ849027~DQ849032.  相似文献   

10.
11.
Resistance (R) genes containing nucleotide-binding site (NBS)-leucine rich repeats (LRR) are the most prevalent types of R gene in plants. The objective of this study was to develop PCR-based R-gene analog polymorphism (RGAP) markers for common bean (Phaseolus vulgaris L). Twenty degenerate primers were designed from the conserved kinase-1a (GVGKTT) and hydrophobic domains (GLPLAL) of known NBS-LRR type R-genes and from EST databases. Sixty-six of the 100 primer combinations tested yielded polymorphism. Thirty-two RGAP markers were mapped in the BAT 93/Jalo EEP558 core mapping population for common bean. The markers mapped to 10 of 11 linkage groups with a strong tendency for clustering. In addition, the RGAP markers co-located, on six linkage groups, with 15 resistance gene analogs (RGAs) that were previously mapped in other populations of common bean. The distance between the priming sites in NBS-LRR type R-genes is around 500 bp. Of the 32 RGAP markers, 19 had sizes larger and 13 less than 500 bp. RGAP markers mapped close to known R-genes on B11, and to QTLs for resistance on B1, B2, B6, B7, B8, B10, and B11. RGAP appears to provide a useful marker technique for tagging and mapping R-genes in segregating common bean populations, discovery of candidate genes underlying resistance QTL, and future cloning of R-genes in common bean.  相似文献   

12.
Degenerate primers based on conserved regions of the nucleotide binding site (NBS) domain (encoded by the largest group of cloned plant disease resistance genes) were used to isolate a set of 15 resistance gene analogs (RGA) from the diploid species Avena strigosa Schreb. These were grouped into seven classes on the basis of 60% or greater nucleic acid sequence identity. Representative clones were used for genetic mapping in diploid and hexaploid oats. Two RGAs were mapped at two loci of the linkage group AswBF belonging to the A. strigosa × A. wiestii Steud map, and ten RGAs were mapped at 15 loci in eight linkage groups belonging to the A. byzantina C. Koch cv. Kanota × A. sativa L. cv. Ogle map. A similar approach was used for targeting genes encoding receptor-like kinases. Three different sequences were obtained and mapped to two linkage groups of the hexaploid oat map. Associations were explored between already known disease resistance loci mapped in different populations and the RGAs. Molecular markers previously linked to crown rust and barley yellow dwarf resistance genes or quantitative trait loci were found in the Kanota × Ogle map linked to RGAs at a distance ranging from 0 cM to 20 cM. Homoeologous RGAs were found to be linked to loci either conferring resistance to different isolates of the same pathogen or to different pathogens. This suggests that these RGAs identify genome regions containing resistance gene clusters.  相似文献   

13.
Plant R genes confer resistance to pathogens in a gene-for-gene mode. Seventy-five putative resistance gene analogs (RGAs) containing conserved domains were cloned from Rubus idaeus L. cv. ‘Latham’ using degenerate primers based on RGAs identified in Rosaceae species. The sequences were compared to 195 RGA sequences identified from five Rosaceae family genera. Multiple sequence alignments showed high similarity at multiple nucleotide-binding site (NBS) motifs with homology to Drosophila Toll and mammalian interleukin-1 receptor (TIR) and non-TIR RNBSA-A motifs. The TIR sequences clustered separately from the non-TIR sequences with a bootstrap value of 76%. There were 11 clusters each of TIR and non-TIR type sequences of multiple genera with bootstrap values of more than 50%, including nine with values of more than 75% and seven of more than 90%. Polymorphic sequence characterized amplified region and cleaved amplified polymorphic sequence markers were developed for nine Rubus RGA sequences with eight placed on a red raspberry genetic linkage map. Phylogenetic analysis indicated four of the mapped sequences share sequence similarity to groupTIR I, while three others were spread in non-TIR groups. Of the 75 Rubus RGA sequences analyzed, members were placed in five TIR groups and six non-TIR groups. These group classifications closely matched those in 12 of 13 studies from which these sequences were derived. The analysis of related DNA sequences within plant families elucidates the evolutionary relationship and process involved in pest resistance development in plants. This information will aid in the understanding of R genes and their proliferation within plant genomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Sequence analysis of plant disease resistance genes shows similarity among themselves, with the presence of conserved motifs common to the nucleotide‐binding site (NBS). Oligonucleotide degenerate primers designed from the conserved NBS motifs encoded by several plant disease resistance genes were used to amplify resistance gene analogues (RGAs) corresponding to the NBS sequences from the genomic DNA of various plant species. Using specific primers designed from the conserved NBS regions, 22 RGAs were cloned and sequenced from pearl millet (Pennisetum glaucum L. Br.). Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into nine distinct classes. GenBank database searches with the consensus protein sequences of each of the nine classes revealed their conserved NBS domains and similarity to other known R genes of various crop species. One RGA 213 was mapped onto LG1 and LG7 in the pearl millet linkage map. This is the first report of the isolation and characterization of RGAs from pearl millet, which will facilitate the improvement of marker‐assisted breeding strategies.  相似文献   

15.
Isolation and mapping of genome-wide resistance (R) gene analogs (RGAs) is of importance in identifying candidate(s) for a particular resistance gene/QTL. Here we reported our result in mapping totally 228 genome-wide RGAs in maize. By developing RGA-tagged markers and subsequent genotyping a population consisting of 294 recombinant inbred lines (RILs), 67 RGAs were genetically mapped on maize genome. Meanwhile, in silico mapping was conducted to anchor 113 RGAs by comparing all 228 RGAs to those anchored EST and BAC/BAC-end sequences via tblastx search (E-value < 10−20). All RGAs from different mapping efforts were integrated into the existing SSR linkage map. After accounting for redundancy, the resultant RGA linkage map was composed of 153 RGAs that were mapped onto 172 loci on maize genome, and the mapped RGAs accounted for approximate three quarters of the genome-wide RGAs in maize. The extensive co-localizations were observed between mapped RGAs and resistance gene/QTL loci, implying the usefulness of this RGA linkage map in R gene cloning via candidate gene approach. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Wenkai Xiao, Jing Zhao and Shengci Fan have contributed equally to this research.  相似文献   

16.
Most of the disease resistance genes (R-genes) discovered in plants have conserved functional domains, predominantly among them are nucleotide binding sites (NBS) and leucine rich repeats (LRR). The sequence information of the conserved domains can be invariably used to mine similar sequences from other plant species, using degenerate and specific primers for their amplification in a polymerase chain reaction. Such derived sequences, known as Resistance Gene Analogues (RGAs), can serve as molecular markers for rapid identification and isolation of R-genes. Besides, they can also provide clues about the evolutionary mechanism of resistance genes and the interaction involved in pathogen recognition. In the recent years, this sequence-homology based approach has been used extensively for the cloning and mapping of RGAs in cereals, pulses, oilseeds, coffee, spices, forest trees and horticultural crops. In this article, the current status of cloning of RGAs from different crops has been reviewed. A general method of RGA cloning and its modifications like NBS-profiling and AFLP-NBS have also been discussed along with examples. Further, it has been suggested that the RGAs cloned in various crops would be a useful genomic resource for developing cultivars with durable resistance to diseases in different crop breeding programmes.  相似文献   

17.
Efficient targeting of plant disease resistance loci using NBS profiling   总被引:16,自引:0,他引:16  
The conserved sequences in the nucleotide-binding sites of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistance (R) genes have been used for PCR-based R-gene isolation and subsequent development of molecular markers. Here we present a PCR-based approach (NBS profiling) that efficiently targets R genes and R-gene analogs (RGAs) and, at the same time, produces polymorphic markers in these genes. In NBS profiling, genomic DNA is digested with a restriction enzyme, and an NBS-specific (degenerate) primer is used in a PCR reaction towards an adapter linked to the resulting DNA fragments. The NBS profiling protocol generates a reproducible polymorphic multilocus marker profile on a sequencing gel that is highly enriched for R genes and RGAs. NBS profiling was successfully used in potato with several restriction enzymes, and several primers targeted to different conserved motifs in the NBS. Across primers and enzymes, the NBS profiles contained 50–90% fragments that were significantly similar to known R-gene and RGA sequences. The protocol was similarly successful in other crops (including tomato, barley, and lettuce) without modifications. NBS profiling can thus be used to produce markers tightly linked to R genes and R-gene clusters for genomic mapping and positional cloning and to mine for new alleles and new sources of disease resistance in available germplasm.Communicated by H.F. Linskens  相似文献   

18.
Disease resistance and defence gene analog (RGA/DGA) sequences were isolated in cocoa using a PCR approach with degenerate primers designed from conserved domains of plant resistance and defence genes: the NBS (nucleotide binding site) motif present in a number of resistance genes such as the tobacco N, sub-domains of plant serine/threonine kinases such as the Pto tomato gene, and conserved domains of two defence gene families: pathogenesis-related proteins (PR) of classes 2 and 5. Nucleotide identity between thirty six sequences isolated from cocoa and known resistance or defence genes varied from 58 to 80%. Amino acid sequences translated from corresponding coding sequences produced sequences without stop codons, except for one NBS –like sequence. Most of the RGAs could be mapped on the cocoa genome and three clusters of genes could be observed : NBS-like sequences clustered in two regions located on chromosomes 7 and 10, Pto-like sequences mapped in five genome regions of which one, located on chromosome 4, corresponded to a cluster of five different sequences. PR2-like sequences mapped in two regions located on chromosome 5 and 9 respectively. An enrichment of the genetic map with microsatellite markers allowed us to identify several co-localisations of RGAs, DGAs and QTL for resistance to Phytophthora detected in several progenies, particularly on chromosome 4 where a cluster of Pto-like sequences and 4 QTL for resistance to Phytophthora were observed. Many other serious diseases affect cocoa and the candidate genes, isolated in this study, could be of broader interest in cocoa disease management.  相似文献   

19.
Molecular characterization of NBS-LRR-RGAs in the rose genome   总被引:2,自引:0,他引:2  
To isolate resistance gene analogues (RGAs) from roses we used various degenerate oligonucleotide primers targeting conserved motifs within the NBS region of nucleotide binding site (NBS)-leucine-rich repeat (LRR) resistance genes. A large RGA sublibrary consisting of 7000 clones was constructed. This sublibrary contains at least 40 unique RGA families of the TIR (toll-/interleukin-1 receptor) and the LZ (leucine zipper) type, which were further analysed. Phylogenetic studies revealed close relationships of some rose RGAs to R genes and RGAs from other plants and gave rise to the assumption that rose R genes evolved from different starting points, prior to and subsequent to speciation. Southern blot analyses showed that the RGAs were organized as single, low and multicopy loci in the rose genome. None of the analysed sequences detected any hybridization signal in Prunus cérasus indicating that the analysed RGAs are not conserved across genera. The efficiency and selectivity of the different degenerate primers used for the RGA isolation is discussed in detail.  相似文献   

20.
Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.Communicated by P. Langridge  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号