首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In both controlled environment and the field, six QTLs for ascochyta blight resistance were identified in three regions of the genome of an intraspecific population of chickpea using the IDS and AUDPC disease scoring systems. One QTL-region was detected from both environments, whereas the other two regions were detected from each environment. All the QTL-regions were significantly associated with ascochyta blight resistance using either of the disease scoring systems. The QTLs were verified by multiple interval mapping, and a two-QTL genetic model with considerable epistasis was established for both environments. The major QTLs generally showed additive gene action, as well as dominance inter-locus interaction in the multiple genetic model. All the QTLs were mapped near a RGA marker. The major QTLs were located on LG III, which was mapped with five different types of RGA markers. A CLRR-RGA marker and a STMS marker flanked QTL 6 for controlled environment resistance at 0.06 and 0.04 cM, respectively. Other STMS markers flanked QTL 1 for field resistance at a 5.6 cM interval. After validation, these flanking markers may be used in marker-assisted selection to breed for elite chickpea cultivars with durable resistance to ascochyta blight. The tight linkage of RGA markers to the major QTL on LG III will allow map-based cloning of the underlying resistance genes.Communicated by P. Langridge  相似文献   

2.
Isolation and mapping of genome-wide resistance (R) gene analogs (RGAs) is of importance in identifying candidate(s) for a particular resistance gene/QTL. Here we reported our result in mapping totally 228 genome-wide RGAs in maize. By developing RGA-tagged markers and subsequent genotyping a population consisting of 294 recombinant inbred lines (RILs), 67 RGAs were genetically mapped on maize genome. Meanwhile, in silico mapping was conducted to anchor 113 RGAs by comparing all 228 RGAs to those anchored EST and BAC/BAC-end sequences via tblastx search (E-value < 10−20). All RGAs from different mapping efforts were integrated into the existing SSR linkage map. After accounting for redundancy, the resultant RGA linkage map was composed of 153 RGAs that were mapped onto 172 loci on maize genome, and the mapped RGAs accounted for approximate three quarters of the genome-wide RGAs in maize. The extensive co-localizations were observed between mapped RGAs and resistance gene/QTL loci, implying the usefulness of this RGA linkage map in R gene cloning via candidate gene approach. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Wenkai Xiao, Jing Zhao and Shengci Fan have contributed equally to this research.  相似文献   

3.
The resistance of sunflower, Helianthus annuus L., to downy mildew, caused by Plasmopara halstedii, is conferred by major genes denoted by Pl. Using degenerate and specific primers, 16 different resistance gene analogs (RGAs) have been cloned and sequenced. Sequence comparison and Southern-blot analysis distinguished six classes of RGA. Two of these classes correspond to TIR-NBS-LRR sequences while the remaining four classes correspond to the non-TIR-NBS-LRR type of resistance genes. The genetic mapping of these RGAs on two segregating F2 populations showed that the non-TIR-NBS-LRR RGAs are clustered and linked to the Pl5/ Pl8 locus for resistance to downy mildew in sunflower. These and other results indicate that different Pl loci conferring resistance to the same pathogen races may contain different sequences.  相似文献   

4.
Pseudomonas syringae pv. phaseolicola is an important disease that causes halo blight in common bean. The genetic mechanisms underlying quantitative halo blight resistance are poorly understood in this species, as most disease studies have focused on qualitative resistance. The present work examines the genetic basis of quantitative resistance to the nine halo blight races in different organs (primary and trifoliate leaf, stem and pod) of an Andean recombinant inbred line (RIL) progeny. Using a multi-environment quantitative trait locus (QTL) mapping approach, 76 and 101 main-effect and epistatic QTLs were identified, respectively. Most of the epistatic interactions detected were due to loci without detectable QTL additive main effects. Main and epistatic QTLs detected were mainly consistent across the environment conditions. The homologous genomic regions corresponding to 26 of the 76 main-effect detected QTLs were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins and known defence genes. Main-effect QTLs for resistance to races 3, 4 and 5 in leaf, stem and pod were located on chromosome 2 within a 3.01-Mb region, where a cluster of nine NL genes was detected. The NL gene Phvul.002G323300 is located in this region, which can be considered an important putative candidate gene for the non-organ-specific QTL identified here. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for halo blight resistance in common bean.  相似文献   

5.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

6.
Whilst minor pests of pear, both sawfly larvae (pear slug) and pear blister mite can at times cause sufficient damage in commercial and particularly in organic pear production for treatment to be required. In the course of breeding new pear cultivars, resistance to both pests was identified in an interspecific pear family raised from a cross between ‘PremP003’ and ‘Moonglow’. The replicated seedling family was subjected to uninhibited insect development for both pests in an insect-proof cage, providing ample infestations for resistance segregation. Using an existing genetic map for the family, one major quantitative trait locus (QTL) for resistance to pear blister mite was located to linkage group 13 (LG13) of ‘PremP003’. For pear slug, we mapped three QTLs for oviposition antixenosis, one each on LG7 and LG9 of ‘Moonglow’ and another on LG10 of ‘PremP003’, and one resistance QTL for leaf damage to LG9 of ‘Moonglow’ at a distance of 8.1 cM below the oviposition QTL. Incorporating these resistances into future cultivars could contribute to a reduction in pesticide use in pear production, especially in combination with the resistances for pear psylla (Cacopsylla pyri) and fire blight (Erwinia amylovora) recently mapped in the same population using marker-assisted selection.  相似文献   

7.
Crenate broomrape (Orobanche crenata) is the major constraint for pea cultivation in the Mediterranean Basin and Middle East. Cultivation of resistant varieties would be the most efficient, economical and environmentally friendly way to control this parasite. However, little resistance is available within cultivated pea. Promising sources of resistance have been identified in wild peas but their use in breeding programs is hampered by the polygenic nature of the resistance. The identification of molecular markers linked to the resistance would allow tracking of the underlying genes, facilitating their introgression into pea cultivars. The main objective of this study was the identification of genomic regions associated with resistance to O. crenata. A RIL (Recombinant Inbred Lines) population derived from a cross between a resistant accession of the wild pea Pisum sativum ssp. syriacum, and a susceptible pea variety was screened for resistance to O. crenata under field conditions during two seasons. In addition, resistance reactions at different stages of the O. crenata infection cycle were assessed using a Petri dish method. The approach allowed the identification of four Quantitative Trait Loci (QTL) associated with field resistance, assessed as the number of emerged broomrape shoots per pea plant under field conditions. These identified QTLs explained individually from 10 to 17% of the phenotypic variation. In addition QTLs governing specific mechanisms of resistance, such as low induction of O. crenata seed germination, lower number of established tubercles per host root length unit, and slower development of tubercles were also identified. Identified QTLs explained individually from 8 to 37% of the variation observed depending on the trait. Host plant aerial biomass and root length were also assessed and mapped. Both traits were correlated with the level of O. crenata infection and three out of the four QTLs controlling resistance under field conditions co-localized with QTLs controlling plant aerial biomass or root length. The relationship observed among these traits and resistance is discussed.  相似文献   

8.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

9.
To identify the chromosomal regions affecting wood quality traits, we conducted a genome-wide quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. This information is important to exploit the full potential of the impending Eucalyptus genome sequence. A three generational mapping population consisting of 296 progeny trees was used to identify QTL associated with several wood quality traits in E. nitens. Thirty-six QTL positions for cellulose content, pulp yield, lignin content, density, and microfibril angle (MFA) were identified across different linkage groups. On linkage groups (LG)2 and 8, cellulose QTL cluster with pulp yield and extractives QTL while on LG4 and 10 cellulose and pulp yield QTLs cluster together. Similarly, on LG4, 5, and 6 QTL for lignin traits were clustered together. At two positions, QTL for MFA, a physical trait related to wood stiffness, were clustered with QTL for lignin traits. Several cell wall candidate genes were co-located to QTL positions affecting different traits. Comparative QTL analysis with Eucalyptus globulus revealed two common QTL regions for cellulose and pulp yield. The QTL positions identified in this study provide a resource for identifying wood quality genes using the impending Eucalyptus genome sequence. Candidate genes identified in this study through co-location to QTL regions may be useful in association studies.  相似文献   

10.
Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and mineral content are important components of forage quality in grasses. Elevated [K]/([Ca] + [Mg]) ratios (KRAT) substantially increase the risk of grass tetany (hypomagnesemia) in grazing animals, which is a serious problem associated with some cool-season grasses. The objectives of this study were to map and compare QTLs controlling concentrations of CP, NDF, ADF, Al, B, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, S, Si, Zn, and KRAT in two full-sib Leymus triticoides × (L. triticoides × L. cinereus) TTC1 and TTC2 families. Significant genetic variation and QTLs were detected for all traits, with evidence of conserved QTLs for ADF (LG1a, LG5Xm, LG7a), NDF (LG7a), Ca (LG1b), CP, (LG5Xm), KRAT (LG3b, LG6b, LG7a, LG7b), Mn (LG2b, LG3b, LG4Xm), and S (LG3a) content in both TTC1 and TTC2 families. Moreover, the direction of QTL effects was the same for 13 of the 14 homologous QTLs in both families. The TTC1 and TTC2 KRAT QTLs on LG7a and LG7b were located near markers defining homoeologous relationships between the sub-genomes of allotetraploid Leymus, suggesting possible QTL homoeology. Another 88 QTLs were unique to one family or the other, but many of these clustered in genome regions common between the two families. These results will support development of new Leymus wildrye forages and help characterize genes controlling mineral uptake and fiber synthesis.  相似文献   

11.
The Pik-h gene in rice confers resistance to several races of rice blast fungus (Magnaporthe oryzae), and has been classified as a member of the Pik cluster, one of the most resistance (R) gene-dense regions in the rice genome. However, the loss of a key mutant isolate has long made it difficult to differentiate Pik-h from other Pik group genes especially from Pik-m. We identified new natural isolates enabling the differentiation between Pik-h and Pik-m genes, and first confirmed the authenticity of the International Rice Research Institute (IRRI) “monogenic” line IRBLkh-K3, and then fine-mapped the Pik-h gene in the Pik cluster. Using 701 susceptible individuals among 3,060 siblings from a cross of IRBLkh-K3×CO39, the Pik-h region was delimited to 270 kb, the narrowest interval among the Pik group genes reported to date, in the cv. Nipponbare genome. Annotation of this genome region first revealed 6 NBS-LRR type R-gene analogs (RGAs), clustered within the central 120 kb, as possible counterparts of Pik-h and 6 other Pik group R genes. Interestingly, the Pik-h region and the cluster of RGAs were shown to be located 130 kb and 230 kb apart from Xa4 and Xa2 bacterial blight resistance genes, respectively, once classified as belonging to the Pik cluster. The closest recombination events were limited to the margins of the Pik-h region, and recombination was suppressed in the core interval with the RGA cluster. This fine-mapping, performed in a short time using an HEGS system, will facilitate utilization of the cluster’s genetic resources and help to elucidate the mechanism of evolution of R-genes. The presence of natural isolates also confirmed that evolution of Pik-h corresponds to pathogen evolution.  相似文献   

12.
Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus was identified in accessions of wild relatives of tomato such as S. habrochaites LYC4. In order to identify loci involved in quantitative resistance (QTLs) to B. cinerea, a population of 174 F2 plants was made originating from a cross between S. lycopersicum cv. Moneymaker and S. habrochaites LYC4. The population was genotyped and tested for susceptibility to grey mold using a stem bioassay. Rbcq1, a QTL reducing lesion growth (LG) and Rbcq2, a QTL reducing disease incidence (DI) were identified. Rbcq1 is located on Chromosome 1 and explained 12% of the total phenotypic variation while Rbcq2 is located on Chromosome 2 and explained 15% of the total phenotypic variation. Both QTL effects were confirmed by assessing disease resistance in two BC2S1 progenies segregating for either of the two QTLs. One additional QTL, Rbcq4 on Chromosome 4 reducing DI, was identified in one of the BC2S1 progenies. F2 individuals, homozygous for the Rbcq2 and Rbcq4 alleles of S. habrochaites showed a reduction of DI by 48%. QTLs from S. habrochaites LYC4 offer good perspectives for breeding B. cinerea resistant tomato cultivars. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Western white pine (Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust (Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.Communicated by R. Hagemann  相似文献   

14.
Resistance to the disease septoria tritici blotch of wheat (Triticum aestivum L.), caused by the fungus Mycosphaerella graminicola (Fuckel.) J. Schrot in Cohn (anamorph Septoria tritici Roberge in Desmaz.) was investigated in a doubled-haploid (DH) population of a cross between the susceptible winter wheat cultivar Savannah and the resistant cultivar Senat. A molecular linkage map of the population was constructed including 76 SSR loci and 244 AFLP loci. Parents and DH progeny were tested for resistance to single isolates of M. graminicola in a growth chamber at the seedling stage, and to an isolate mixture at the adult plant stage, in field trials. A gene located at or near the Stb6 locus mapping to chromosome 3A provided seedling resistance to IPO323. Two complementary genes, mapping to chromosome 3A, one of which was the IPO323 resistance gene, were needed for resistance to the Danish isolate Ris?97-86. In addition, a number of minor loci influenced the expression of resistance in the growth chamber. In the field, four QTLs for resistance to septoria tritici blotch were detected. Two QTLs, located on chromosomes 3A and 6B explained 18.2 and 67.9% of the phenotypic variance in the mean over two trials. Both these QTLs were also detected at the seedling stage with isolate Ris?97-86, whereas isolate IPO323 only detected the QTL on 3A. Additionally, two QTLs identified in adult plants on chromosomes 2B and 7B were not detected at the seedling stage. Four QTLs were detected for plant height located on chromosomes 2B, 3A, 3B and on a linkage group not assigned to a chromosome. The major QTLs on 3A and on the unassigned linkage group were consistent over two trials, and the QTL on 3A seemed to be linked to a QTL for septoria tritici blotch resistance.  相似文献   

15.
The objective of this investigation was to tag a locus for white rust resistance in a Brassica rapa ssp. oleifera F2 population segregating for this trait, using bulked segregant analysis with random amplified polymorphic DNA (RAPD) markers, linkage mapping and a candidate gene approach based on resistance gene analogs (RGAs). The resistance source was the Finnish line Bor4109. The reaction against white rust races 7a and 7v was scored in 20 seedlings from each self-pollinated F2 individual. The proportion of resistant plants among these F3 families varied from 0 to 67%. Bulked segregant analysis did not reveal any markers linked with resistance and, therefore, a linkage map with 81 markers was created. A locus that accounted for 18.4% of the variation in resistance to white rust was mapped to linkage group (LG) 2 near the RAPD marker Z19a. During the study, a bacterial resistance gene homologous to Arabidopsis RPS2 and six different RGAs were sequenced. RPS2 and five of the RGAs were mapped to linkage groups LG1, LG4 and LG9. Unfortunately, none of the RGAs could be shown to be associated with white rust resistance.Communicated by H.C. BeckerThe nucleotide sequence data reported has been deposited in the Genbank under the accession numbers AF315081–AF315087.  相似文献   

16.
Susceptibility to foliar pathogens commonly causes significant reductions in productivity of the important temperate forage perennial ryegrass. Breeding for durable disease resistance involves not only the deployment of major genes but also the additive effects of minor genes. An approach based on in vitro single nucleotide polymorphism (SNP) discovery in candidate defence response (DR) genes has been used to develop potential diagnostic genetic markers. SNPs were predicted, validated and mapped for representatives of the pathogenesis-related (PR) protein-encoding and reactive oxygen species (ROS)-generating gene classes. The F(1)(NA(6) x AU(6)) two-way pseudo-test cross population was used for SNP genetic mapping and detection of quantitative trait loci (QTLs) in response to a crown rust field infection. Novel resistance QTLs were coincident with mapped DR gene SNPs. QTLs on LG3 and LG7 also coincided with both herbage quality QTLs and candidate genes for lignin biosynthesis. Multiple DR gene SNP loci additionally co-located with QTLs for grey leaf spot, bacterial wilt and crown rust resistance from other published studies. Further functional validation of DR gene SNP loci using methods such as fine-mapping and association genetics will improve the efficiency of parental selection based on superior allele content.  相似文献   

17.
QTLs for partial resistance to Rice yellow mottle virus (RYMV) in rice were mapped in two populations of doubled-haploid lines (DHLs) and recombinant inbred lines (RILs) derived from the same cross but evaluated for different resistance criteria (virus content and symptom severity). An integrative map was used to compare the two genetic maps and a global analysis of both populations was performed. Most of the QTLs previously identified in DHL population were confirmed with increased significance and precision. As many recent studies evidenced the role of eukaryotic translation initiation factors (eIF) of 4E and 4G families in plant susceptibility to RNA viruses, we checked if these genes co-locate with QTLs of resistance to RYMV. Their systematic in silico identification was carried out on the rice genome and their physical locations were compared to QTL positions on the integrative map. In order to confirm or not the co-locations observed, the analysis was completed by evaluation of near-isogenic lines, QTL fine mapping and sequencing of candidate genes. Three members from eIF4G family could be retained as reliable candidates whereas eIF4E genes, commonly found to govern resistances in other plant/virus interactions, were discarded. Together with the recent identification of an eIF(iso)4G as a major resistance gene, data suggests an important role of genes from eIF4G family in rice resistance to RYMV but does not exclude the contribution of factors different from the translation initiation complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A population derived from a cross between grapevine breeding strain Gf.Ga-52-42 and cultivar ‘Solaris’ consisting of 265 F1-individuals was genetically mapped using SSR markers and screened for downy mildew resistance. Quantitative trait locus (QTL) analysis revealed two strong QTLs on linkage groups (LGs) 18 and 09. The locus on LG 18 was found to be identical with the previously described locus Rpv3 and is transmitted by Gf.Ga-52-42. ‘Solaris’ transmitted the resistance-related locus on LG 09 explaining up to 50% of the phenotypic variation in the population. This downy mildew resistance locus is named Rpv10 for resistance to Plasmopara viticola. Rpv10 was initially introgressed from Vitis amurensis, a wild species of the Asian Vitis gene pool. The one-LOD supported confidence interval of the QTL spans a section of 2.1 centi Morgan (cM) corresponding to 314 kb in the reference genome PN40024 (12x). Eight resistance gene analogues (RGAs) of the NBS–LRR type and additional resistance-linked genes are located in this region of PN40024. The F1 sub-population which contains the Rpv3 as well as the Rpv10 locus showed a significantly higher degree of resistance, indicating additive effects by pyramiding of resistance loci. Possibilities for using the resistance locus Rpv10 in a grapevine breeding programme are discussed. Furthermore, the marker data revealed ‘Severnyi’ × ‘Muscat Ottonel’ as the true parentage for the male parent of ‘Solaris’.  相似文献   

19.
A "F1" diploid population between Solanum tuberosum 2 x and the wild Solanum spegazzinii was studied. It segregated for resistance against the potato cyst nematode Globodera pallida derived from the wild species. The inheritance had a quantitative nature. Linkage maps of AFLP and RFLP markers were constructed for both parents. Three QTLs were identified on the map of the resistant parent on chromosomes V, VI and XII, respectively. The first one had a major effect and explained more than 50% of the total variance of resistance. It is located in a cluster of resistance genes and may be the same locus as Gpa which has been described formerly. The two others explained about 20% of the total variance each. The QTL on chromosome XII is also in a cluster of resistance genes, and in an orthologous position with resistance genes against nematodes in tomato and pepper.  相似文献   

20.
Plant R genes confer resistance to pathogens in a gene-for-gene mode. Seventy-five putative resistance gene analogs (RGAs) containing conserved domains were cloned from Rubus idaeus L. cv. ‘Latham’ using degenerate primers based on RGAs identified in Rosaceae species. The sequences were compared to 195 RGA sequences identified from five Rosaceae family genera. Multiple sequence alignments showed high similarity at multiple nucleotide-binding site (NBS) motifs with homology to Drosophila Toll and mammalian interleukin-1 receptor (TIR) and non-TIR RNBSA-A motifs. The TIR sequences clustered separately from the non-TIR sequences with a bootstrap value of 76%. There were 11 clusters each of TIR and non-TIR type sequences of multiple genera with bootstrap values of more than 50%, including nine with values of more than 75% and seven of more than 90%. Polymorphic sequence characterized amplified region and cleaved amplified polymorphic sequence markers were developed for nine Rubus RGA sequences with eight placed on a red raspberry genetic linkage map. Phylogenetic analysis indicated four of the mapped sequences share sequence similarity to groupTIR I, while three others were spread in non-TIR groups. Of the 75 Rubus RGA sequences analyzed, members were placed in five TIR groups and six non-TIR groups. These group classifications closely matched those in 12 of 13 studies from which these sequences were derived. The analysis of related DNA sequences within plant families elucidates the evolutionary relationship and process involved in pest resistance development in plants. This information will aid in the understanding of R genes and their proliferation within plant genomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号