首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Eg5 or KSP is a homotetrameric Kinesin-5 involved in centrosome separation and assembly of the bipolar mitotic spindle. Analytical gel filtration of purified protein and cryo-electron microscopy (cryo-EM) of unidirectional shadowed microtubule-Eg5 complexes have been used to identify the stable dimer Eg5-513. The motility assays show that Eg5-513 promotes robust plus-end-directed microtubule gliding at a rate similar to that of homotetrameric Eg5 in vitro. Eg5-513 exhibits slow ATP turnover, high affinity for ATP, and a weakened affinity for microtubules when compared to monomeric Eg5. We show here that the Eg5-513 dimer binds microtubules with both heads to two adjacent tubulin heterodimers along the same microtubule protofilament. Under all nucleotide conditions tested, there were no visible structural changes in the monomeric Eg5-microtubule complexes with monastrol treatment. In contrast, there was a substantial monastrol effect on dimeric Eg5-513, which reduced microtubule lattice decoration. Comparisons between the X-ray structures of Eg5-ADP and Eg5-ADP-monastrol with rat kinesin-ADP after docking them into cryo-EM 3-D scaffolds revealed structural evidence for the weaker microtubule-Eg5 interaction in the presence of monastrol.  相似文献   

2.
Kinesin motor proteins utilize the energy from ATP hydrolysis to transport cellular cargo along microtubules. Kinesins that play essential roles in the mechanics of mitosis are attractive targets for novel antimitotic cancer therapies. Monastrol, a cell-permeable inhibitor that specifically inhibits the kinesin Eg5, the Xenopus laevis homologue of human KSP, can cause mitotic arrest and monopolar spindle formation. In this study, we show that the extent of monastrol inhibition of KSP microtubule-stimulated ATP hydrolysis is highly dependent upon ionic strength. Detailed kinetic analysis of KSP inhibition by monastrol in the presence and absence of microtubules suggests that monastrol binds to the KSP-ADP complex, forming a KSP-ADP-monastrol ternary complex, which cannot bind to microtubules productively and cannot undergo further ATP-driven conformational changes.  相似文献   

3.
Cochran JC  Gilbert SP 《Biochemistry》2005,44(50):16633-16648
The ATPase mechanism of kinesin superfamily members in the absence of microtubules remains largely uncharacterized. We have adopted a strategy to purify monomeric human Eg5 (HsKSP/Kinesin-5) in the nucleotide-free state (apoEg5) in order to perform a detailed transient state kinetic analysis. We have used steady-state and presteady-state kinetics to define the minimal ATPase mechanism for apoEg5 in the absence and presence of the Eg5-specific inhibitor, monastrol. ATP and ADP binding both occur via a two-step process with the isomerization of the collision complex limiting each forward reaction. ATP hydrolysis and phosphate product release are rapid steps in the mechanism, and the observed rate of these steps is limited by the relatively slow isomerization of the Eg5-ATP collision complex. A conformational change coupled to ADP release is the rate-limiting step in the pathway. We propose that the microtubule amplifies and accelerates the structural transitions needed to form the ATP hydrolysis competent state and for rapid ADP release, thus stimulating ATP turnover and increasing enzymatic efficiency. Monastrol appears to bind weakly to the Eg5-ATP collision complex, but after tight ATP binding, the affinity for monastrol increases, thus inhibiting the conformational change required for ADP product release. Taken together, we hypothesize that loop L5 of Eg5 undergoes an "open" to "closed" structural transition that correlates with the rearrangements of the switch-1 and switch-2 regions at the active site during the ATPase cycle.  相似文献   

4.
Monastrol inhibition of the mitotic kinesin Eg5   总被引:1,自引:0,他引:1  
Monastrol is a small, cell-permeable molecule that arrests cells in mitosis by specifically inhibiting Eg5, a member of the Kinesin-5 family. We have used steady-state and presteady-state kinetics as well as equilibrium binding approaches to define the mechanistic basis of S-monastrol inhibition of monomeric human Eg5/KSP. In the absence of microtubules (Mts), the basal ATPase activity is inhibited through slowed product release. In the presence of microtubules, the ATPase activity is also reduced with weakened binding of Eg5 to microtubules during steady-state ATP turnover. Monastrol-treated Eg5 also shows a decreased relative affinity for microtubules under equilibrium conditions. The Mt.Eg5 presteady-state kinetics of ATP binding and the subsequent ATP-dependent isomerization are unaffected during the first ATP turnover. However, monastrol appears to stabilize a conformation that allows for reversals at the ATP hydrolysis step. Monastrol promotes a dramatic decrease in the observed rate of Eg5 association with microtubules, and ADP release is slowed without trapping the Mt.Eg5.ADP intermediate. We propose that S-monastrol binding to Eg5 induces a stable conformational change in the motor domain that favors ATP re-synthesis after ATP hydrolysis. The aberrant interactions with the microtubule and the reversals at the ATP hydrolysis step alter the ability of Eg5 to generate force, thereby yielding a nonproductive Mt.Eg5 complex that cannot establish or maintain the bipolar spindle.  相似文献   

5.
The microtubule-dependent kinesin-like protein Eg5 from Homo sapiens is involved in the assembly of the mitotic spindle. It shows a three-domain structure with an N-terminal motor domain, a central coiled coil, and a C-terminal tail domain. In vivo HsEg5 is reversibly inhibited by monastrol, a small cell-permeable molecule that causes cells to be arrested in mitosis. Both monomeric and dimeric Eg5 constructs have been examined in order to define the minimal monastrol binding domain on HsEg5. NMR relaxation experiments show that monastrol interacts with all of the Eg5 constructs used in this study. Enzymatic techniques indicate that monastrol partially inhibits Eg5 ATPase activity by binding directly to the motor domain. The binding is noncompetitive with respect to microtubules, indicating that monastrol does not interfere with the formation of the motor-MT complex. The binding is not competitive with respect to ATP. Both enzymology and in vivo assays show that the S enantiomer of monastrol is more active than the R enantiomer and racemic monastrol. Stopped-flow fluorometry indicates that monastrol inhibits ADP release by forming an Eg5-ADP-monastrol ternary complex. Monastrol reversibly inhibits the motility of human Eg5. Monastrol has no inhibitory effect on the following members of the kinesin superfamily: MC5 (Drosophila melanogaster Ncd), HK379 (H. sapiens conventional kinesin), DKH392 (D. melanogaster conventional kinesin), BimC1-428 (Aspergillus nidulans BimC), Klp15 (Caenorhabditis elegans C-terminal motor), or Nkin460GST (Neurospora crassa conventional kinesin).  相似文献   

6.
Eg5/KSP is the kinesin-related motor protein that generates the major plus-end directed force for mitotic spindle assembly and dynamics. Recent work using a dimeric form of Eg5 has found it to be a processive motor; however, its mechanochemical cycle is different from that of conventional Kinesin-1. Dimeric Eg5 appears to undergo a conformational change shortly after collision with the microtubule that primes the motor for its characteristically short processive runs. To better understand this conformational change as well as head-head communication during processive stepping, equilibrium and transient kinetic approaches have been used. By contrast to the mechanism of Kinesin-1, microtubule association triggers ADP release from both motor domains of Eg5. One motor domain releases ADP rapidly, whereas ADP release from the other occurs after a slow conformational change at approximately 1 s(-1). Therefore, dimeric Eg5 begins its processive run with both motor domains associated with the microtubule and in the nucleotide-free state. During processive stepping however, ATP binding and potentially ATP hydrolysis signals rearward head advancement 16 nm forward to the next microtubule-binding site. This alternating cycle of processive stepping is proposed to terminate after a few steps because the head-head communication does not sufficiently control the timing to prevent both motor domains from entering the ADP-bound state simultaneously.  相似文献   

7.
Brier S  Lemaire D  Debonis S  Forest E  Kozielski F 《Biochemistry》2004,43(41):13072-13082
Human Eg5, a mitotic motor of the kinesin superfamily, is involved in the formation and maintenance of the mitotic spindle. The recent discovery of small molecules that inhibit HsEg5 by binding to its catalytic motor domain leading to mitotic arrest has attracted more interest in Eg5 as a potential anticancer drug target. We have used hydrogen-deuterium exchange mass spectrometry and directed mutagenesis to identify the secondary structure elements that form the binding sites of new Eg5 inhibitors, in particular for S-trityl-l-cysteine, a potent inhibitor of Eg5 activity in vitro and in cell-based assays. The binding of this inhibitor modifies the deuterium incorporation rate of eight peptides that define two areas within the motor domain: Tyr125-Glu145 and Ile202-Leu227. Replacement of the Tyr125-Glu145 region with the equivalent region in the Neurospora crassa conventional kinesin heavy chain prevents the inhibition of the Eg5 ATPase activity by S-trityl-l-cysteine. We show here that S-trityl-l-cysteine and monastrol both bind to the same region on Eg5 by induced fit in a pocket formed by helix alpha3-strand beta5 and loop L5-helix alpha2, and both inhibitors trigger similar local conformational changes within the interaction site. It is likely that S-trityl-l-cysteine and monastrol inhibit HsEg5 by a similar mechanism. The common inhibitor binding region appears to represent a "hot spot" for HsEg5 that could be exploited for further inhibitor screening.  相似文献   

8.
Monastrol, a cell-permeable small molecule inhibitor of the mitotic kinesin, Eg5, arrests cells in mitosis with monoastral spindles. Here, we use monastrol to probe mitotic mechanisms. We find that monastrol does not inhibit progression through S and G2 phases of the cell cycle or centrosome duplication. The mitotic arrest due to monastrol is also rapidly reversible. Chromosomes in monastrol-treated cells frequently have both sister kinetochores attached to microtubules extending to the center of the monoaster (syntelic orientation). Mitotic arrest-deficient protein 2 (Mad2) localizes to a subset of kinetochores, suggesting the activation of the spindle assembly checkpoint in these cells. Mad2 localizes to some kinetochores that have attached microtubules in monastrol-treated cells, indicating that kinetochore microtubule attachment alone may not satisfy the spindle assembly checkpoint. Monastrol also inhibits bipolar spindle formation in Xenopus egg extracts. However, it does not prevent the targeting of Eg5 to the monoastral spindles that form. Imaging bipolar spindles disassembling in the presence of monastrol allowed direct observations of outward directed forces in the spindle, orthogonal to the pole-to-pole axis. Monastrol is thus a useful tool to study mitotic processes, detection and correction of chromosome malorientation, and contributions of Eg5 to spindle assembly and maintenance.  相似文献   

9.
We have designed and synthesized a series of monastrol derivatives, an allosteric inhibitor of Eg5, a motor protein responsible for the formation and maintenance of the bipolar spindle in mitotic cells. Sterically demanding structural modifications have been introduced on the skeleton of the parent drug either via a multicomponent Biginelli reaction or a stepwise modification of monastrol. The ability of these compounds to inhibit Eg5 activity has been investigated using two in vitro steady-state ATPase assays (basal and microtubule-stimulated) as well as a cell-based assay. One compound in the series appeared more potent than monastrol by a fivefold factor. Three other compounds that were unable to inhibit Eg5 ATPase activity in vitro proved potent Eg5 inhibitors in the cell-based assay. The results obtained led to the identification of structure-activity relationships further used to design an affinity matrix that can be used for fast and efficient purification of Eg5 from crude lysate of eukaryotic cells.  相似文献   

10.
Controlled activity of several kinesin motors is required for the proper assembly of the mitotic spindle. Eg5, a homotetrameric bipolar kinesin-5 from Xenopus laevis, can cross-link and slide anti-parallel microtubules apart by a motility mechanism comprising diffusional and directional modes. How this mechanism is regulated, possibly by the tail domains of the opposing motors, is poorly understood. In order to explore the basic unregulated kinesin-5 motor activity, we generated a stably dimeric kinesin-5 construct, Eg5Kin, consisting of the motor domain and neck linker of Eg5 and the neck coiled coil of Drosophila melanogaster kinesin-1 (DmKHC). In single-molecule motility assays, we found this chimera to be highly processive. In addition, we studied the effect of the kinesin-5-specific inhibitor monastrol using single-molecule fluorescence assays. We found that monastrol reduced the length of processive runs, but strikingly did not affect velocity. Quantitative analysis of monastrol dose dependence suggests that two bound monastrol molecules are required to be bound to an Eg5Kin dimer to terminate a run.  相似文献   

11.
Aneuploidy may result from abnormalities in the biochemical pathways and cellular organelles associated with chromosome segregation. Monastrol is a reversible, cell-permeable, non-tubulin interacting inhibitor of the mitotic kinesin Eg5 motor protein which is required for assembling and maintaining the mitotic spindle. Monastrol can also impair centrosome separation and induce monoastral spindles in mammalian somatic cells. The ability of monastrol to alter kinesin Eg5 and centrosome activities and spindle geometry may lead to abnormal chromosome segregation. Mouse oocytes were exposed to 0 (control), 15, 30, and 45 microg/ml monastrol in vitro for 6 h during meiosis I and subsequently cultured for 17 h in monastrol-free media prior to cytogenetic analysis of metaphase II oocytes. A subset of oocytes was cultured for 5 h prior to processing cells for meiotic I spindle analysis. Monastrol retarded oocyte maturation by significantly (P < 0.05) decreasing germinal vesicle breakdown and increasing the frequencies of arrested metaphase I oocytes. Also, significant (P < 0.05) increases in the frequencies of monoastral spindles and chromosome displacement from the metaphase plate were found in oocytes during meiosis I. In metaphase II oocytes, monastrol significantly (P < 0.05) increased the frequencies of premature centromere separation and aneuploidy. These findings suggest that abnormal meiotic spindle geometry predisposes oocytes to aneuploidy.  相似文献   

12.
Eg5 is a homotetrameric kinesin-5 motor protein that generates outward force on the overlapping, antiparallel microtubules (MTs) of the mitotic spindle. Upon binding an MT, an Eg5 dimer releases one ADP molecule, undergoes a slow (∼0.5 s−1) isomerization, and finally releases a second ADP, adopting a tightly MT-bound, nucleotide-free (APO) conformation. This conformation precedes ATP binding and stepping. Here, we use mutagenesis, steady-state and pre-steady-state kinetics, motility assays, and electron paramagnetic resonance spectroscopy to examine Eg5 monomers and dimers as they bind MTs and initiate stepping. We demonstrate that a critical element of Eg5, loop 5 (L5), accelerates ADP release during the initial MT-binding event. Furthermore, our electron paramagnetic resonance data show that L5 mediates the slow isomerization by preventing Eg5 dimer heads from binding the MT until they release ADP. Finally, we find that Eg5 having a seven-residue deletion within L5 can still hydrolyze ATP and move along MTs, suggesting that L5 is not required to accelerate subsequent steps of the motor along the MT. Taken together, these properties of L5 explain the kinetic effects of L5-directed inhibition on Eg5 activity and may direct further interventions targeting Eg5 activity.  相似文献   

13.
Eg5 is a mitotic kinesin that plays a crucial role in the formation of bipolar mitotic spindles, by hydrolyzing ATP to push apart anti-parallel microtubules. Dimethylenastron is potent specific small molecule inhibitor of Eg5. The mechanism by which dimethylenastron inhibits Eg5 function remains unclear. By comparing with enastron, here we report that dimethylenastron prevents the growth of pancreatic and lung cancer cells more effectively, by halting mitotic progression and triggering apoptosis. We analyze their interactions with ADP-bound Eg5 crystal structure, and find that dimethylenastron binds Eg5 motor domain with higher affinity. In addition, dimethylenastron allosterically blocks the conformational change of the “sandwich”-like ADP-binding pocket more effectively. We subsequently use biochemical approach to reveal that dimethylenastron slows ADP release more significantly than enastron. These data thus provide biological, structural and mechanistic insights into the potent inhibitory activity of dimethylenastron.  相似文献   

14.
We report here the first inhibitor-bound structure of a mitotic motor protein. The 1.9 A resolution structure of the motor domain of KSP, bound with the small molecule monastrol and Mg2+ x ADP, reveals that monastrol confers inhibition by "induced-fitting" onto the protein some 12 A away from the catalytic center of the enzyme, resulting in the creation of a previously non-existing binding pocket. The structure provides new insights into the biochemical and mechanical mechanisms of the mitotic motor domain. Inhibition of KSP provides a novel mechanism to arrest mitotic spindle formation, a target of several approved and investigative anti-cancer agents. The structural information gleaned from this novel pocket offers a new angle for the design of anti-mitotic agents.  相似文献   

15.
We used fluorescent speckle microscopy to probe the dynamics of the mitotic kinesin Eg5 in Xenopus extract spindles, and compared them to microtubule dynamics. We found significant populations of Eg5 that were static over several seconds while microtubules flux towards spindle poles. Eg5 dynamics are frozen by adenylimidodiphosphate. Bulk turnover experiments showed that Eg5 can exchange between the spindle and the extract with a half life of <55 s. Eg5 distribution in spindles was not perturbed by inhibition of its motor activity with monastrol, but was perturbed by inhibition of dynactin with p50 dynamitin. We interpret these data as revealing the existence of a static spindle matrix that promotes Eg5 targeting to spindles, and transient immobilization of Eg5 within spindles. We discuss alternative interpretations of the Eg5 dynamics we observe, ideas for the biochemical nature of a spindle matrix, and implications for Eg5 function.  相似文献   

16.
Kar3 is a minus-end-directed microtubule motor that is implicated in meiotic and mitotic spindle function in Saccharomyces cerevisiae. To date, the only truncated protein of Kar3 that has been reported to promote unidirectional movement in vitro is GSTKar3. This motor contains an NH2-terminal glutathione S-transferase (GST) tag followed by the Kar3 sequence that is predicted to form an extended alpha-helical coiled-coil. The alpha-helical domain leads into the neck linker and COOH-terminal motor domain. Kar3 does not homodimerize with itself but forms a heterodimer with either Cik1 or Vik1, both of which are non-motor polypeptides. We evaluated the microtubule-GSTKar3 complex in comparison to the microtubule-Kar3 motor domain complex to determine the distinctive mechanistic features required for GSTKar3 motility. Our results indicate that ATP binding was significantly faster for GSTKar3 than that observed previously for the Kar3 motor domain. In addition, microtubule-activated ADP release resulted in an intermediate that bound ADP weakly in contrast to the Kar3 motor domain, suggesting that after ADP release, the microtubule-GSTKar3 motor binds ATP in preference to ADP. The kinetics also showed that GST-Kar3 readily detached from the microtubule rather than remaining bound for multiple ATP turnovers. These results indicate that the extended alpha-helical domain NH2-terminal to the catalytic core provides the structural transitions in response to the ATPase cycle that are critical for motility and that dimerization is not specifically required. This study provides the foundation to define the mechanistic contributions of Cik1 and Vik1 for Kar3 force generation and function in vivo.  相似文献   

17.
Monastrol is a small molecule inhibitor that is specific for Eg5, a member of the kinesin 5 family of mitotic motors. Crystallographic models of Eg5 in the presence and absence of monastrol revealed that drug binding produces a variety of structural changes in the motor, including in loop L5 and the neck linker. What is not clear from static crystallographic models, however, is the sequence of structural changes produced by drug binding. Furthermore, because crystallographic structures can be influenced by the packing forces in the crystal, it also remains unclear whether these drug-induced changes occur in solution, at physiologically active concentrations of monastrol or of other drugs that target this site. We have addressed these issues by using a series of spectroscopic probes to monitor the structural consequences of drug binding. Our results demonstrated that the crystallographic model of an Eg5-ADP-monastrol ternary complex is consistent with several solution-based spectroscopic probes. Furthermore, the kinetics of these spectroscopic signal changes allowed us to determine the temporal sequence of drug-induced structural transitions. These results suggested that L5 may be an element in the pathway that links the state of the nucleotide-binding site to the neck linker in kinesin motors.  相似文献   

18.
Kinesin superfamily motor proteins contain a structurally conserved loop near the ATP binding site, termed L5. The function of L5 is unknown, although several drug inhibitors of the mitotic kinesin Eg5 bind to L5. We used electron paramagnetic resonance spectroscopy (EPR) to investigate the function of L5 in Eg5. We site-specifically attached EPR probes to ADP, L5, and the neck linker element that docks along the enzymatic head to drive forward motility on microtubules (MTs). Nucleotide-dependent spectral mobility shifts occurred in all of these structural elements, suggesting that they undergo coupled conformational changes. These spectral shifts were altered by deletion of L5 or addition of S-trityl-l-cysteine (STLC), an allosteric inhibitor that binds to L5. In particular, EPR probes attached to the neck linker of MT-bound Eg5 shifted to a more immobilized component in the nucleotide-free state relative to the ADP-bound state, consistent with the neck linker docking upon ADP release. In contrast, after L5 deletion or STLC addition, EPR spectra were highly immobilized in all nucleotide states. We conclude that L5 undergoes a conformational change that enables Eg5 to bind to MTs in a pre-powerstroke state. Deletion or inhibition of L5 with the small-molecule inhibitor STLC blocks this pre-powerstroke state, forcing the Eg5 neck linker to dock regardless of the nucleotide state.  相似文献   

19.
The G(2) DNA damage checkpoint is activated by genotoxic agents and is particularly important for cancer therapies. Overriding the checkpoint can trigger precocious entry into mitosis, causing cells to undergo mitotic catastrophe. But some checkpoint-abrogated cells can remain viable and progress into G(1) phase, which may contribute to further genome instability. Our previous studies reveal that the effectiveness of the spindle assembly checkpoint and the duration of mitosis are pivotal determinants of mitotic catastrophe after checkpoint abrogation. In this study, we tested the hypothesis whether mitotic catastrophe could be enhanced by combining genotoxic stress, checkpoint abrogation, and the inhibition of the mitotic kinesin protein Eg5. We found that mitotic catastrophe induced by ionizing radiation and a CHK1 inhibitor (UCN-01) was exacerbated after Eg5 was inhibited with either siRNAs or monastrol. The combination of DNA damage, UCN-01, and monastrol sensitized cancer cells that were normally resistant to checkpoint abrogation. Importantly, a relatively low concentration of monastrol, alone not sufficient in causing mitotic arrest, was already effective in promoting mitotic catastrophe. These experiments suggest that it is possible to use sublethal concentrations of Eg5 inhibitors in combination with G(2) DNA damage checkpoint abrogation as an effective therapeutic approach.  相似文献   

20.
Although assembly of the mitotic spindle is known to be a precisely controlled process, regulation of the key motor proteins involved remains poorly understood. In eukaryotes, homotetrameric kinesin-5 motors are required for bipolar spindle formation. Eg5, the vertebrate kinesin-5, has two modes of motion: an adenosine triphosphate (ATP)-dependent directional mode and a diffusive mode that does not require ATP hydrolysis. We use single-molecule experiments to examine how the switching between these modes is controlled. We find that Eg5 diffuses along individual microtubules without detectable directional bias at close to physiological ionic strength. Eg5's motility becomes directional when bound between two microtubules. Such activation through binding cargo, which, for Eg5, is a second microtubule, is analogous to known mechanisms for other kinesins. In the spindle, this might allow Eg5 to diffuse on single microtubules without hydrolyzing ATP until the motor is activated by binding to another microtubule. This mechanism would increase energy and filament cross-linking efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号