首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
影响农杆菌介导狗牙根遗传转化的因素   总被引:2,自引:0,他引:2  
农杆菌LBA4404/pCAMBIA1301介导转化狗牙根的体系中,遗传转化的最佳优化条件是:胚性愈伤组织预培养10 d,农杆菌菌液浓度为OD600 0.5~0.8,共培养时间为2d.共培养基中添加100μmol·L-1乙酰丁香酮能有效地提高植物瞬时表达率.侵染处理方法中滤纸滴加法比浸泡法效果更好.黑暗条件下的瞬时表达率比12 h光照/12 h黑暗培养条件下的高.在最佳优化条件下狗牙根的GUS瞬时表达率达到36.36%.  相似文献   

2.
根癌农杆菌介导的金边狗牙根遗传转化条件的优化   总被引:3,自引:0,他引:3  
为建立根癌农杆菌(Agrobacterium tumefaciens,菌(L.)Pers.]最佳遗传转化体系,以葡萄糖醛酸糖苷酶(GUS)基因的瞬间表达率为指标,从愈伤组织继代时间、根癌农杆菌侵染时间、负压条件及光照时间等方面进行了筛选.结果表明,根癌农杆菌介导的金边狗牙根最佳的转化体系是:以继代培养2周的愈伤组织为起始材料,根癌农杆菌介导感染10 min,经负压处理(抽拉20次)并在全光条件下共培养转化.  相似文献   

3.
优良大麦品种花30幼胚遗传转化体系的优化   总被引:1,自引:0,他引:1  
以大麦花培基因型花30的幼胚为外植体,设置不同的培养基类型、不同激素配比及碳源,研究其对幼胚愈伤组织诱导及绿苗分化的影响,以此建立和优化一个适于优良大麦品种遗传转化的高效组织培养体系。结果表明:在N6、MS和B5的组合改良培养基下,以蔗糖为碳源,附加2mg/L 2,4-D、1mg/L ABA时,有最高的愈伤组织诱导率,且愈伤质量最好。Cu2+的添加具有抑制幼胚直接发芽成苗和改善愈伤组织质量的双重功效。添加2mg/L 6-BA对愈伤组织的分化效果比较理想。为了提高农杆菌介导转化大麦外源基因的瞬时表达率和优化遗传转化体系,利用花30幼胚产生的愈伤组织为受体材料,通过检测GUS基因的瞬时表达情况,研究了农杆菌介导的大麦遗传转化中菌液的浓度、侵染时间以及共培养天数对遗传转化的影响,结果表明:当菌液浓度OD600=0.5的条件下,侵染15min,共培养2d表现出最佳的GUS瞬时表达率。  相似文献   

4.
为提高农杆菌介导的水稻遗传转化效率,以晚粳97为转化材料,绿色荧光蛋白gfp基因为报告基因,采用正交试验L9(33)对影响农杆菌介导水稻的遗传转化因子进行优化。通过观察愈伤组织荧光表达情况,分析菌液浓度、共培养温度与共培养时间对农杆菌转化水稻的影响。结果表明,在OD660值为0.1、共培养21℃~23℃黑暗条件下,农杆菌与水稻愈伤共培养72 h,最有利于水稻的遗传转化,该条件下晚粳97愈伤组织荧光表达率达到70.9%。  相似文献   

5.
以"汉中冬韭"韭菜品种为试验材料,用含有pCAMBIA3301质粒的根癌农杆菌菌株EHA105对影响韭菜遗传转化效率的多种因素进行研究。结果表明,诱导40 d的愈伤组织,GUS基因瞬时表达率达到93%,且最适宜于不定芽的分化;当乙酰丁香酮(AS)的浓度为100μmol/L时,愈伤的GUS表达率达到91%,植株再生率为7.9%,AS浓度增加时其值也不会增加;菌液OD600值为0.6侵染10 min时,与其他组合相比,外植体受伤程度小,GUS表达率及再生率最高;侵染后的愈伤共培养3 d后,农杆菌生长较少,GUS表达率为91.1%,而再生率达到7.2%,为最佳的共培养时间。通过试验得到韭菜遗传转化因素的最佳条件,为今后的遗传转化提供一些参考。  相似文献   

6.
谢秀祯  林俏慧  郭勇 《广西植物》2007,27(6):903-908
以根癌农杆菌LBA4404和EHA105为供体菌株,对玫瑰茄愈伤组织进行了转化条件的研究,建立了一套玫瑰茄愈伤组织遗传转化体系。利用该转化体系获得了2个稳定表达新霉素磷酸转移酶活性的玫瑰茄转化细胞系。GUS活性组织化学检测和PCR扩增鉴定的结果表明,愈伤组织的转化率为4%。说明采用农杆菌介导法将外源基因经愈伤组织导入玫瑰茄细胞是可行的。  相似文献   

7.
目的:旨在建立一个农杆菌介导的甘草愈伤组织遗传转化的可行方案,并对转化条件进行优化。方法:选择EHA105和LBA4404两种根癌农杆菌菌株,热激法转入含有绿色荧光蛋白GFP基因的植物表达载体pBI121-gfp,挑选转化的农杆菌用于侵染胀果甘草愈伤组织。设置不同培养时间的愈伤组织作为受体材料和农杆菌不同侵染时间两组条件,经共培养后的甘草愈伤组织进行荧光检测。结果:愈伤组织在含有100mg/l卡那霉素的继代培养基上进行筛选培养,得到了具有卡那霉素抗性的转化甘草愈伤组织,转化愈伤组织经继代培养基后在紫外光下仍可见绿色荧光,PCR检测转化愈伤组织基因组中含有gfp基因。结论:试验建立了农杆菌介导的甘草愈伤组织的遗传转化体系,为目的基因导入甘草细胞利用基因工程手段调控甘草次生代谢产物生物合成的研究奠定了基础。  相似文献   

8.
以3个水稻品种的成熟胚诱导的良好胚性愈伤组织为受体,以LycB为目的基因,应用根癌农杆菌介导法对水稻进行遗传转化,同时以抗性愈伤率为依据,对影响转化的几个因素进行优化研究。结果表明:预培养4d、侵染5~10min、农杆菌菌液浓度OD600值0.7~1.0、共培养2d有利于提高转化率。经潮霉素筛选获得的抗性植株经PCR和PCR-Southern分析鉴定,初步证明外源基因LycB已整合到水稻的基因组中。  相似文献   

9.
影响花椰菜农杆菌介导转化因素的研究   总被引:1,自引:1,他引:0  
以花椰菜赛雪的带柄子叶为外植体,以MS为基本培养基,GUS基因为报告基因,分析了遗传转化过程中的影响因子,如预培养时间、农杆菌菌液浓度、侵染时间、共培养时间、乙酰丁香酮浓度、延迟筛选时间等对外植体瞬间表达和稳定表达的影响。结果显示,以花椰菜的带柄子叶为外植体,预培养2d,农杆菌菌液为OD6000.3~0.4,侵染8min,共培养2d,乙酰丁香酮浓度为100μmol/L,延迟筛选7d,卡那霉素筛选压为5mg/L为最优的遗传转化方案,转化率最高可达35.7%。另外,GUS瞬间表达率和转化率并不存在绝对的相关性,但瞬间表达分析仍然可以作为外源基因进入受体细胞的指示。花椰菜农杆菌介导转化方案的优化研究为芸薹属蔬菜高效遗传转化提供了技术保障,有利于芸薹属蔬菜遗传育种与种质创新研究。  相似文献   

10.
基因工程是改良百合性状的重要手段,建立高效稳定的遗传转化体系是百合转基因研究的基础。以百合地下茎鳞片为外植体,筛选并优化百合的直接和间接再生体系;把含枸杞GR(Glutathione reductase)基因和筛选基因NPTII的载体,利用农杆菌转化法对鳞片和愈伤组织进行转基因操作,采用正交试验,优化转化条件以建立适合不同受体的遗传转化体系。结果表明,各阶段最优培养条件分别为:鳞片诱导和膨大MS+2mg/L 2,4-D(2,4-二氯苯氧乙酸)+0.1mg/L NAA(萘乙酸)+ 90g/L蔗糖;鳞片直接分化MS+1.0mg/L 6-BA(6-苄氨基嘌呤)+0.2mg/L NAA+ 30g/L蔗糖,间接分化MS+2.5mg/L 2,4-D +0.4mg/L TDZ(噻重氮苯基脲)+60g/L蔗糖;百合鳞片的Kana(卡那霉素)选择压为100mg/L,愈伤组织75mg/L。遗传转化体系条件为:鳞片,农杆菌OD600=0.6,预培养3d,侵染40min,As(乙酰丁香酮)200μmol/L,阳性植株转化率为17.50%;鳞片分化愈伤组织,农杆菌OD600,预培养5d,侵染40min,As 200μmol/L,阳性植株转化率为12.60%。  相似文献   

11.
The study was conducted to standardize a protocol for Agrobacterium-mediated genetic transformation of buffel grass (Cenchrus ciliaris L.). Embryogenic calli, produced from one-year-old mature seeds of buffel grass, were used as target cells for Agrobacterium-mediated transformation. A. tumefaciens strain LBA4404, harbouring pCAMBIA-1301 or pCAMBIA-2301, was used for co-cultivation with embryogenic calli from three genotypes (IG-3108, IG-9757 and IG-97101). Co-culturing of calli with Agrobacterium for 30 minutes, followed by co-cultivation with 0.1 mM acetosyringone for 3 days was found to be optimum for maximum transformation efficiency. Presence of acetosyringone during co-cultivation was found to be necessary for transformation. Transient GUS (beta-glucuronidase) gene expression was used to monitor T-DNA delivery into the target cells. Significant genotypic variations in response to transformation were observed among the tested genotypes. A very high frequency (63.3%) of GUS gene expression was obtained following Agrobacterium-mediated gene transfer into embryogenic calli. The standardized protocol would be useful for Agrobacterium-mediated genetic transformation of buffel grass with genes of agronomic importance.  相似文献   

12.
Tang W 《Plant cell reports》2003,21(6):555-562
Additional virulence (vir) genes in Agrobacterium tumefaciens and sonication were investigated for their impact on transformation efficiency in loblolly pine (Pinus taeda L.). Mature zygotic embryos of loblolly pine were co-cultivated with disarmed A. tumefaciens strain EHA105 containing either plasmid vector pCAMBIA1301 or vector pCAMBIA1301 with an additional 15.8-kb fragment carrying extra copies of the Vir B, Vir C, and Vir G regions from the supervirulent plasmid pTOK47. pCAMBIA1301 contains hygromycin resistance and the beta-glucuronidase (GUS) reporter gene. Expression of GUS was observed after 3-6 days of co-cultivation, with peak expression at approximately 21 days. The highest numbers of GUS-expressing areas were visible up to 21 days after co-cultivation, declining rapidly thereafter. Both transient and stable transformation efficiencies increased when the explants were sonicated before co-cultivation and/or the additional virB, virC, and virG genes were included with the pCAMBIA1301 plasmid T-DNA. Use of the plasmid with additional vir genes and sonication dramatically enhanced the efficiency of Agrobacterium-mediated gene transfer not only in transient expression but also in the recovery of hygromycin-resistant lines. Stably transformed cultures and transgenic plants were produced from embryos transformed with A. tumefaciens EHA105 carrying pCAMBIA1301 or pCAMBIA1301+pTOK47 in the three families of loblolly pine. The presence of the introduced GUS and hygromycin phosphotransferase genes in the transgenic plants was confirmed by polymerase chain reaction and Southern hybridization analyses.  相似文献   

13.
Transgenic Robinia pseudoacacia plants were obtained by Agrobacterium tumefaciens mediated gene transfer. Agrobacterium strain LBA4404 harbouring a binary vector that contained the chimeric neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) genes was co-cultivated with hypocotyl segments of in vitro raised seedlings of Robinia. Parameters important for high efficiency regeneration and transformation rates included type of explant, pre-conditioning of explants and appropriate length of co-cultivation period with Agrobacterium. A transformation frequency 16.67% was obtained by 48 hr of pre-conditioning followed by 48 hr of co-cultivation. Transformed tissue was selected by the ability to grow on kanamycin containing medium. Successful regeneration was followed after histochemical GUS assay for the detection of transgenic tissue. This transformation procedure has the potential to expand the range of genetic variation in Robinia.  相似文献   

14.
An Agrobacterium -mediated transformation procedure for aspen ( Populus tremula L.), involving the direct regeneration of shoot-buds from stem explants, is described. Disarmed Agrobacterium tumefaciens strain EHA101 harboring the binary plasmid pKIW1105 (which carries the uidA and nptII genes, coding for β-glucuronidase [GUS] and neomycin phosphotransferase II, respectively) was used for the transformation of stem explants. An incubation period of 48 to 72 h was found to be most effective in terms of transient GUS expression on the cut surface of the stem explants. Adventitious shoots regenerated after 2–3 weeks of culture in a woody plant medium (WPM) supplemented with TDZ (1-phenyl-3-[1,2,3-thiadiazol-5-yl]-urea, Thidiazuron) and carbenicillin. Three different kanamycin-based selection schemes were evaluated for optimization of transformation efficiency: (1) Kanamycin was added only to the rooting medium (5 to 6 weeks post-inoculation), or (2) to the regeneration medium 10–14 days after inoculation, or (3) after 2 days of co-cultivation. The third selection scheme was found to be optimal for adventitious shoots with regard to both the time required and the transformation efficiency, the latter being much higher than with the other schemes. Leaf samples from kanamycin-resistant shoots and plantlets were tested for GUS expression, and subjected to polymerase chain reaction (PCR) analysis of uidA and nptII genes. A Southern blot of the corresponding PCR-amplified fragments confirmed their authenticity and Southern blots of total plant DNA confirmed integration of the nptII gene into the plant genome.  相似文献   

15.
大豆(Glycine max)下胚轴作为大豆遗传转化的外植体材料,能快速高频再生不定芽。然而,在遗传转化过程中褐化影响基因转化效率。在该研究中,我们用含有GUS染色基因和hpt II(Hygromycin phosphotransferase II)筛选基因的农杆菌(Agrobacterium tumefaciens) LBA4404侵染大豆下胚轴,并用组织化学定位法测定了GUS基因的瞬时表达,以确定大豆的优化基因转化条件。结果显示,在共培养基中加入硫代硫酸钠、L_半胱氨酸以及二硫苏糖醇等抗氧化剂,可以有效地抑制大豆下胚轴在组培过程中褐化的发生,并大幅度提高农杆菌在下胚轴的瞬时表达率。这些结果说明抗氧化剂可以降低这种影响并有效提高基因转化效率。  相似文献   

16.
Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens   总被引:3,自引:0,他引:3  
A reproducible protocol has been established for the transformation of Ginkgo biloba by Agrobacterium tumefaciens . Embryos were co-cultivated with Agrobacterium tumefaciens GV3101 (pGV2260) carrying the binary vector pTHW136, which contained the gus reporter gene and the nptII selectable gene, encoding the enzymes β -glucuronidase (GUS) and neomycin phophotransferase II, respectively. Transient GUS activity has been used to screen the effects of different factors on the transfer of DNA into embryos (age of embryos, infection method, composition of co-cultivation medium). Then, experimental conditions have been defined to obtain transgenic kanamycin-resistant G. biloba calluses expressing GUS activity. The highest rate of transformation (45%) was reached using 1.5-month-old embryos co-cultivated on a medium lacking mineral elements. The integration of gus and nptII genes in calluses was confirmed by polymerase chain reaction analysis and Southern blot analysis.  相似文献   

17.
ABSTRACT: BACKGROUND: As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus) produces many terpenoid indole alkaloids (TIAs), such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus the establishment of an efficient genetic transformation method is required. RESULTS: To develop a genetic transformation method for C. roseus, A. tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report beta-glucuronidase (GUS) gene and a selectable marker neomycin phosphotransferase II gene (NTPII). The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 muM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance mediums, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC) showed that overexpression of DAT increased the yield of vindoline in transgenic plants. CONCLUSIONS: In the present study, we report an efficient Agrobacterium-mediated transformation system for C. roseus plants with 11.11 % of transformation frequency. To our knowledge, this is the first report on the establishment of A. tumefaciens mediated transformation and regeneration of C. roseus. More importantly, the C. roseus transformation system developed in this work was confirmed in the successful transformation of C. roseus using a key gene involved in TIAs biosynthetic pathway resulting in the higher accumulation of vindoline in transgenic plants.  相似文献   

18.
Thlaspi caerulescens L. is well known as a Zn/Cd hyperaccumulator. The genetic manipulation of T. caerulescens through transgenic technology can modify plant features for use in phytoremediation. Here, we describe the efficient transformation of T. caerulescens using Agrobacterium tumefaciens strain EHA105 harboring a binary vector pBI121 with the nptII gene as a selectable marker, the gus gene as a reporter and a foreign catalase gene. Based on the optimal concentration of growth regulators, the shoot cluster regeneration system via callus phase provided the basis of the genetic transformation in T. caerulescens. The key variables in transformation were examined, such as co-cultivation period and bacterial suspension density. Optimizing factors for T-DNA delivery resulted in kanamycin-resistant transgenic shoots with transformation efficiency more than 20%, proven by histochemical GUS assay and PCR analysis. Southern analysis of nptII and RT-PCR of catalase gene demonstrated that the foreign genes were integrated in the genome of transformed plantlets. Moreover, the activity of catalase enzyme in transgenic plants was obviously higher than in wild-type plants. This method offers new prospects for the genetic engineering of this important hyperaccumulator species.  相似文献   

19.
20.
Summary A high frequency shoot regeneration (80%) was developed from callus of leaf discs and stem internodes of Moricandia arvensis. Leaf discs were shown to be a preferable starting material for transformation experiments. Agrobacterium tumefaciens strain GV3101/pMP90 used in this study contained a binary vector with genes for kanamycin resistance, hygromycin resistance and -glucuronidase (GUS). Maximum transformation efficiency (10.3%) was achieved by using kanamycin at the rate of 200 mg/l as a selection agent. Presence of tobacco suspension culture during co-cultivation and a pre-selection period of seven days after co-cultivation was essential for successful transformation. Transgenic plants grew to maturity and exhibited flowering in a glasshouse. GUS activity was evident in all parts of leaf and the presence of GUS gene in plant gemone was confirmed by PCR analysis.Abbreviations GUS -glucuronidase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号