首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对不同月份采摘的贴梗海棠叶α-葡萄糖苷酶抑制活性进行研究,发现3月和7月采集的贴梗海棠叶不同提取部位均具有一定的α-葡萄糖苷酶抑制活性。其中,7月贴梗海棠叶中乙酸乙酯部位(IC50=47.27μg/mL)的α-葡萄糖苷酶抑制活性最好,远高于阳性对照阿卡波糖(IC50=1213.38μg/mL)。7月贴梗海棠叶中乙酸乙酯部位和正丁醇部位的α-葡萄糖苷酶抑制活性均高于3月叶中相应部位,而石油醚部位低于3月叶的石油醚部位,且都高于阳性对照阿卡波糖。此外,各提取物对α-葡萄糖苷酶的抑制作用均具有剂量依赖性。  相似文献   

2.
采用96微孔板法测定草麻黄抑制α-葡萄糖苷酶活性.草麻黄正丁醇(IC50=6.86 μg/mL)、乙酸乙酯(IC50 =77.28 μg/mL)和石油醚部位(IC50=190.20 μg/mL)抑制活性远高于阳性对照阿卡波糖(IC50=1081.27μg/mL).研究表明,草麻黄各部位均具有很好的α-筒萄糖苷酶抑制活性,可进行活性追踪分离活性成分.  相似文献   

3.
采用清除二苯代苦味酰基(DPPH)自由基、清除[2,2-连氨-(3-乙基苯并噻唑啉-6-磺酸)二氨盐](ABTS)自由基和铁离子还原/抗氧化能力(FRAP)测定法对疏毛绣线菊总抗氧化活性行评价,将测定结果与阳性对照药物二丁基羟基甲苯(BHT)进行比较。研究结果发现疏毛绣线菊正丁醇部位具有较强的清除DPPH自由基(IC50=42.2μg/mL)和还原Fe3+的能力(TEAC=1052.46μmol/g),乙酸乙酯部位清除ABTS自由基能力(IC50=6.4μg/mL)较好,但均弱于阳性对照药物BHT(IC50和TEAC值分别为23μg/mL、2.3μg/mL和1532.7μmol/g)。实验证明疏毛绣线菊正丁醇部位体外抗氧化活性较强。  相似文献   

4.
采用清除二苯代苦味酰基(DPPH)自由基、清除[2,2-连氨-(3-乙基苯并噻唑啉-6-磺酸)二氨盐](ABTS)自由基和铁离子还原/抗氧化能力(FRAP)测定法对疏毛绣线菊总抗氧化活性行评价,将测定结果与阳性对照药物二丁基羟基甲苯(BHT)进行比较。研究结果发现疏毛绣线菊正丁醇部位具有较强的清除DPPH自由基(IC50=42.2μg/mL)和还原Fe3+的能力(TEAC=1052.46μmol/g),乙酸乙酯部位清除ABTS自由基能力(IC50=6.4μg/mL)较好,但均弱于阳性对照药物BHT(IC50和TEAC值分别为23μg/mL、2.3μg/mL和1532.7μmol/g)。实验证明疏毛绣线菊正丁醇部位体外抗氧化活性较强。  相似文献   

5.
本文采用96微孔板法,首次对河南鼠尾草抑制酵母和大鼠小肠α-葡萄糖苷酶活性进行研究。河南鼠尾草乙酸乙酯提取物(IC50=28.73μg/mL)和正丁醇提取物(IC50=73.90μg/mL)抑制酵母α-葡萄糖苷酶活性远高于阳性对照Acarbose(IC50=1081.27μg/mL),但只有乙酸乙酯提取物(IC50=366.79μg/mL)具有抑制大鼠小肠α-葡萄糖苷酶活性,阳性对照Acarbose未检测出其IC50。结果表明,河南鼠尾草乙酸乙酯提取物和正丁醇提取物均具有较好的酵母α-葡萄糖苷酶抑制活性,但只有乙酸乙酯提取物具有良好的大鼠小肠α-葡萄糖苷酶抑制活性。  相似文献   

6.
对朱砂根抑制α-葡萄糖苷酶与抗氧化活性进行研究.利用96微孔板法筛选α-葡萄糖苷酶抑制活性;采用DPPH、ABTS和FRAP方法分析抗氧化活性.结果表明,乙酸乙酯部位抑制α-葡萄糖苷酶的活性最高(IC50=39.27 μg/mL),石油醚部位次之(IC50 =56.11 μg/mL),正丁醇部位活性最弱(IC50=62.05μg/mL),但均远大于阳性对照Acarbose(IC50=1081.27 μg/mL);乙酸乙酯部位抗氧化能力最强,正丁醇部位次之.乙酸乙酯部位清除DPPH自由基(IC50=38.55 mg/L)的能力比BHT( IC50=18.71 mg/L)低1/2,清除ABTS自由基的能力(IC50=3.60 mg/L)比BHT(IC50=7.44 mg/L)强,但比BHA(IC50=1.74 mg/L)弱,还原Fe3+的能力(FRAP=512.99 ±6.80 μmoTE/g)为BHT(FRAP=1581.68±97.41μmol TE/g)的1/3.结果显示朱砂根乙酸乙酯部位抑制α-葡萄糖苷酶和抗氧化活性最好.  相似文献   

7.
首次采用96微孔板法检测贵州和河南产凹叶厚朴抑制α-葡萄糖苷酶活性;并采用DPPH、ABTS和FRAP三种方法测定其抗氧化活性.贵州产凹叶厚朴乙酸乙酯(IC50 =7.22 μg,/mL)和正丁醇提取部位(IC50=36.59 μg/mL),河南产凹叶厚朴石油醚(IC50=107.04 μg/mL)和乙酸乙酯提取部位(IC50=17.17μg/mL),它们的活性都远高于于阳性对照Acarhose( IC50=1081.27 μg/mL).贵州产凹叶厚朴乙酸乙酯提取部位清除ABTS自由基的能力最强(IC50=8.81 μg/mL),强于阳性对照BHT(IC50=11.94 μg/mL);其次为河南产凹叶厚朴乙酸乙酯提取部位(IC50=12.73 μg/mL).研究结果表明,贵州产凹叶厚朴乙酸乙酯提取部位抑制α-葡萄糖苷酶和抗氧化活性最好.  相似文献   

8.
五种苦苣苔科植物α-葡萄糖苷酶抑制活性研究   总被引:2,自引:1,他引:1  
利用体外α-葡萄糖苷酶抑制模型对5种苦苣苔科植物进行活性评价,并与阳性对照Acarbose进行比较,发现5种植物不同部位均有一定的α-葡萄糖苷酶抑制活性。其中,牛耳岩白菜石油醚部位的抑制活性最高(IC50=26.19μg/mL,活性均远大于阳性对照Acarbose(IC50=1081.27μg/mL)。不同植物比较,牛耳岩白菜的α-葡萄糖苷酶抑制活性最好,其3种不同溶剂提取物与Acarbose相比均有很高抑制活性;对牛耳岩白菜提取物的α-葡萄糖苷酶抑制动力学研究结果表明,石油醚和乙酸乙酯提取物对α-葡萄糖苷酶抑制作用属于非竞争性抑制类型,Ki值分别为4.24和40.04μg/mL。正丁醇提取物则属于竞争性抑制类型(Ki=205.48μg/mL)  相似文献   

9.
为了评价人面果叶子、根部、果实提取物体外抗糖尿病活性,相应测定了其石油醚提取物(PFr.)、乙酸乙酯提取物(EFr.)、正丁醇提取物(BFr.)、水提取物(WFr.)的α-葡萄糖苷酶与α-淀粉酶抑制活性,以及HepG2细胞的促葡萄糖消耗能力。果实乙酸乙酯提取物(IC50=17.81±1.09μg/mL)、叶子乙酸乙酯提取物(IC50=18.60±1.56μg/mL)、根部乙酸乙酯提取物(IC50=14.05±0.24μg/mL)、根部正丁醇提取物(IC50=13.01±0.38μg/mL)显示了较好的α-葡萄糖苷酶抑制活性(acarbose IC50200μg/mL)。而根部乙酸乙酯与正丁醇提取物在600μg/mL的浓度下就显示了90%的α-葡萄糖苷酶抑制率,在1.5 mg/mL的浓度下显示了90%的α-淀粉酶抑制率。在促葡萄糖消耗试验中,果实乙酸乙酯提取物在浓度为7.5~30 mg/mL时显示了很好的促HepG2细胞葡萄糖消耗能力(P0.001),叶子乙酸乙酯提取物、根部正丁醇与乙酸乙酯提取物的促葡萄糖消耗率达到了3.08、3.12、1.93,仅次于果实乙酸乙酯提取物(3.91)。此次研究为人面果抗糖尿病活性开发提供一定理论基础。  相似文献   

10.
肉桂抑制α-葡萄糖苷酶活性成分研究   总被引:1,自引:0,他引:1  
为寻找肉桂中具有抑制α-葡萄糖苷酶活性的化学成分,采用高效液相色谱结合体外抑制α-葡萄糖苷酶活性筛选模型的方法,进行活性成分的跟踪分离,并对活性化合物进行酶抑制动力学研究.结果显示,肉桂石油醚提取物(IC50=350.37 μg/mL)的活性明显高于阳性对照阿卡波糖(IC50=1028.99 μg/mL),从中分离出2个活性成分,分别鉴定为桂皮醛( IC50 =277.89 μg/mL)和肉桂酸(IC50=286.22 μg/mL).酶抑制动力学结果表明它们对α-葡萄糖苷酶的抑制类型均为非竞争性抑制,Ki值分别为178.07 μg/mL和229.43 μg/mL.  相似文献   

11.
利用体外抑制α-葡萄糖苷酶模型,首次对植物帽蕊木叶、皮提取物和从中分离得到的化合物进行活性评价,并与阳性对照Acarbose 进行比较.结果表明帽蕊木叶和皮提取物都具有很高抑制α-葡萄糖苷酶活性,且叶的活性要好于皮,同一部位的正丁醇和乙酸乙酯提取物的活性要好于石油醚提取物;从帽蕊木中得到的化合物莨菪内酯(scopletin)的α-葡萄糖苷酶抑制活性(IC50=35.03 μg/mL)高于阳性对照Acarbose(IC50=1081.27 μg/mL)约为其活性的30倍.  相似文献   

12.
细叶卷柏提取物的体外抗肿瘤活性   总被引:2,自引:1,他引:1  
李娟  陈科力  徐嘉成 《广西植物》2008,28(5):690-693
利用MTT法检测细叶卷柏乙酸乙酯和正丁醇提取物对HeLa细胞生长的抑制作用,利用流式细胞术(FCM)比较不同提取物对细胞凋亡的影响。结果显示:细叶卷柏的乙酸乙酯和正丁醇部位抑制细胞生长和诱导细胞凋亡作用均有明显的剂量依赖性。乙酸乙酯部位的IC50值为1.927μg/mL,正丁醇部位的IC50值为24.600μg/mL。因此,细叶卷柏乙酸乙酯部位的体外抗肿瘤活性相对较强,其次是其正丁醇部位,水提部位相对较弱。细叶卷柏是一种潜在的抗肿瘤药用植物。  相似文献   

13.
首次利用体外α-葡萄糖苷酶抑制模型以96微孔板法,对内蒙古产2种柽柳属植物不同溶剂提取物进行活性评价,并与阳性对照Acarbose比较,发现6种提取物均有较好的α-葡萄糖苷酶抑制作用,远远强于阳性对照Acarbose(IC50=1103.01μg·mL-1)的抑制活性。结果显示,同一植物不同溶剂提取物相比较,两者石油醚提取物α-葡萄糖苷酶抑制活性不及乙酸乙酯和正丁醇提取物;不同植物同一溶剂的提取物抑制活性也不同,6种提取物中,多枝柽柳的正丁醇和柽柳的乙酸乙酯提取物抑制活性最高(IC50=13.36和17.35μg·mL-1)。所有提取物对α-葡萄糖苷酶活性的抑制效果均很好,且多枝柽柳抑制活性整体上较柽柳好,具有良好的潜在开发价值。  相似文献   

14.
黑莓(萨尼)果实体外抗氧化活性研究   总被引:1,自引:0,他引:1  
采用清除二苯代苦味酰基(DPPH)自由基和[2,2’-连氨-(3-乙基苯并噻唑啉-6-磺酸)二氨盐](ABTS)自由基及铁离子还原/抗氧化能力(FRAP)测定法研究黑莓(萨尼)果实体外抗氧化活性,并于阳性对照丁基羟基茴香醚(BHA)和二丁基羟基甲苯(BHT)比较.萨尼果实正丁醇部位体外抗氧化活性比较好.正丁醇部位清除DPPH和ABTS自由基的能力(IC50 =8.44和4.55 μg/mL)强于阳性对照BHT(IC50=18.71和7.72 μg/mL),弱于阳性对照BHA(IC50=3.2和1.88 μg/mL),乙酸乙酯部位清除DPPH和ABTS自由基的能力(IC50=38.55和17.25 μg/mL)均弱于阳性对照BHA和BHT,乙酸乙酯部位和正丁醇部位对Fe3+的还原能力(Trolox当量=711.57±10.14和628.4±11.30μmol/g)均弱于阳性对照BHA和BHT(Trolox当量=6633.04±114.04和1581.68 ±97.41 μmol/g).  相似文献   

15.
剑麻提取物的细胞毒活性研究   总被引:1,自引:0,他引:1  
用溶剂萃取法对剑麻的95%乙醇提取物进行分段处理,利用MTT法测定各提取部位的体外细胞毒活性。正丁醇提取物对肿瘤细胞株K-562、SMMC-7721和SGC-7901显示有生长抑制活性,IC50值分别为5.6、23.8和26.8μg/mL,而石油醚、乙酸乙酯和水溶性部位则没有活性。  相似文献   

16.
黄连提取物对α-葡萄糖苷酶抑制作用研究   总被引:1,自引:0,他引:1  
利用体外α-葡萄糖苷酶抑制模型对黄连不同部位提取物进行活性评价,并与阳性对照Acarbose比较,发现黄连不同部位均有一定的α-葡萄糖苷酶抑制活性.其中,黄连根茎乙酸乙酯提取物的抑制活性最高(IC_(50)=20.72 μg/mL),黄连种子石油醚部位(IC_(50)=40.86 μg/mL)和黄连叶石油醚部位(IC_(50)=62.85 μg/mL)的活性次之.3个部位的提取物活性均远大于阳性对照Acarbose(IC_(50)=1081,27 μg/mL).不同部位比较,根茎对α-葡萄糖苷酶抑制活性最好,这3种提取物抑制活性均比阳性对照高;同一部位不同提取物比较,石油醚和甲醇提取物α-葡萄糖苷酶抑制活性一般要高于乙酸乙酯提取物.  相似文献   

17.
首次利用体外α-葡萄糖苷酶抑制模型对内蒙古产3种蒺藜科植物的9个提取物进行活性评价,并与阳性对照Acarbose比较,发现3种植物均有抑制α-葡萄糖苷酶活性。其中白刺石油醚提取物对α-葡萄糖苷酶的抑制活性(IC50=81.80 mg/L)最高,其余依次为小果白刺乙酸乙酯提取物(IC50=610.29 mg/L),霸王石油醚(IC50=627.22 mg/L)和乙酸乙酯提取物(IC50=838.40 mg/L),它们的抑制活性远大于阳性对照Acarbose(IC50=1103.01 mg/L)。结果发现,不同植物不同溶剂提取物的α-葡萄糖苷酶抑制活性不同。同一植物不同溶剂提取物相比较,甲醇提取物的α-葡萄糖苷酶抑制活性不及乙酸乙酯和石油醚提取物。  相似文献   

18.
采用清除二苯代苦味酰基(DPPH)自由基、清除[2,2'-连氨-(3-乙基苯并噻唑啉-6-磺酸)二铵盐](ABTS)自由基及铁离子还原/抗氧化能力(FRAP)测定法,以二丁基羟基甲苯(BHT)为阳性对照,对丹参生品及炮制品进行抗氧化活性评价。实验结果表明,丹参生品及其炮制品均有一定的抗氧化活性。其中,丹参炭乙酸乙酯部位清除DPPH自由基的能力最强,IC50值为13.9μg/mL;炒丹参乙酸乙酯部位、酒丹参乙酸乙酯部位和丹参炭正丁醇部位清除ABTS自由基能力最强,IC50值均为2.1μg/mL;米丹参乙酸乙酯部位的FRAP值最高为1517.81μmol/g。不同炮制方法对丹参抗氧化活性的能力有所不同,其中,丹参炭的整体抗氧化活性相对较好。  相似文献   

19.
为确定石榴花中抑制α-葡萄糖苷酶的有效活性部位,针对α-葡萄糖苷酶这个糖代谢途径中重要的靶蛋白,实时追踪α-葡萄糖苷酶的抑制率,筛选出pH 8.0的水溶液为最佳提取溶剂。结果表明:正丁醇萃取部位经丙酮沉淀后,半抑制浓度IC50为4.36 mg/mL,该沉淀经70%乙醇洗脱部位对α-葡萄糖苷酶的抑制率最高。石榴花中皂甙粗提物对α-葡萄糖苷酶的抑制活性高于其他活性成分,IC50为3.853 mg/mL。石榴花是一种天然、有效的α-葡萄糖苷酶抑制剂来源。  相似文献   

20.
采用DPPH法、ABTS法和FRAP三种测定法对银薇和红花紫薇体外抗氧化活性进行综合评价,并与阳性对照二丁基羟基甲苯(BHT)比较。研究结果发现紫薇花具有较好的抗氧化活性。银薇乙酸乙酯部位清除DPPH自由基的能力(IC50=7.4μg/m L)、清除ABTS自由基的能力(IC50=1.8μg/m L)和还原Fe3+的能力(TEAC=2664.7μmol/g)均强于阳性对照BHT(DPPH方法:IC50=23μg/m L;ABTS方法:IC50=2.3μg/m L;FRAP方法:TEAC=1532.7μmol/g),银薇乙酸乙酯部位抗氧化能力最强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号