首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的探讨脱细胞神经移植物诱导大鼠骨髓间充质干细胞分化为施旺细胞样细胞的可行性。方法将分离纯化的SD大鼠骨髓间充质干细胞进行体外培养扩增,行表型鉴定后,取第5代细胞,诱导组采用脱细胞神经移植物匀浆进行诱导,非诱导组加入等量无血清培养基,倒置相差显微镜观察诱导后细胞形态变化,免疫细胞化学染色检测诱导后细胞S-100,神经胶质纤维酸性蛋白(glial fibrillary acidic protein GFAP)的表达情况。结果BMSCs表型鉴定为CD44+、CD54+、CD34-,免疫细胞化学染色GFAP、S-100的阳性表达率分别为为(42±4)%和(64±5)%。结果 脱细胞神经移植物可诱导骨髓间充质干细胞分化为施旺细胞样细胞。  相似文献   

2.
胎鼠脊髓源性神经干细胞分离培养与鉴定   总被引:2,自引:1,他引:1  
目的:研究胎鼠的脊髓源性神经干细胞的分离培养方法并观察其增殖和分化能力。方法:利用显微操作技术分离获得胎鼠脊髓组织、无血清培养技术和酶消化法结合机械法传代培养神经干细胞、免疫细胞化学方法鉴定神经干细胞和分化情况。结果:建立了胎鼠脊髓源性神经干细胞的分离、培养和鉴定的方法,观察到了脊髓源性神经干细胞具有较强的增殖能力,在添加有5ng/mlEGF和5ng/mlbFGF的无血清培养液中可贴壁分化为神经元、少突细胞和星形胶质细胞。结论:在体外培养条件下分离培养的胎鼠脊髓源性神经干细胞具有干细胞的特性即较强的增殖能力和多向分化潜能。  相似文献   

3.
大鼠胚胎神经干细胞单克隆化及单层化培养和鉴定   总被引:3,自引:0,他引:3  
采用原代培养SD胎鼠神经干细胞,在形成神经球之后,传代至0.1%明胶包被的培养皿,显微镜下挑取一个神经球贴壁后的细胞团,吹打后贴壁培养.同样方法挑细胞团并传代培养5~6次,得到纯化的由一个神经干细胞扩增的克隆,对得到的神经干细胞进行鉴定以及分化能力的评估,证明得到的细胞就是神经干细胞.结果表明,成功分离了SD胎鼠的神经干细胞,进行单克隆化单层培养,神经干细胞和分化后的细胞标志基因都可以检测到.上述工作为疾病模型大鼠治疗及相关基础研究提供细胞来源及形态标准.  相似文献   

4.
分离培养大鼠骨髓间充质干细胞(mesenchymal stem cells, MSCs), 采用丹参对4~5代MSCs进行反复多次诱导分化及再分化, 将其诱导分化为神经样细胞, 倒置显微镜下连续观察形态学变化, 通过免疫荧光细胞化学检测神经样细胞巢蛋白(nestin)、神经丝蛋白 (neurofiliament, NF)、突触(小)泡蛋白(synaptophysin) 的表达, 采用细胞膜电位特异的荧光探针DiBAC4(3)标记细胞, 激光扫描共聚焦显微镜动态监测细胞受高钾刺激前后的荧光强度变化, 观察细胞电生理反应.结果显示: MSCs第1次经过丹参诱导2 h后, MSCs伸出突起, 向神经性细胞形态转变, 此时巢蛋白表达率为 (95.1±2.1)% (x±s, n=3), 基本不表达NF; 随着诱导分化及去分化过程的次数增加, 细胞分化为神经样细胞的时间缩短, 突起拉长并交互缠绕呈复杂网状, MSCs第4次经过丹参诱导1 h后, NF表达率(95.3±1.6)% (x±s, n=3), 并表达突触(小)泡蛋白, 5 h后突触(小)泡蛋白表达更为广泛; 激光共聚焦扫描显微镜显示第4次诱导5 h后的细胞在高钾刺激下发生去极化, 胞内荧光强度瞬时增强, 而MSCs空白对照对高钾刺激无反应.本优化诱导方案可以高效率地诱导MSCs分化为具有电生理特性的神经样细胞.  相似文献   

5.
新生大鼠脊髓神经干细胞的分离培养及鉴定   总被引:6,自引:0,他引:6  
目的 从新生大鼠的脊髓中分离培养神经干细胞并观察其增殖和分化能力。方法 采用细胞培养技术结合间接免疫荧光细胞化学法。结果 分离的细胞生长旺盛 ,单克隆化生成的细胞团 ,BrdU掺入呈强阳性。分离培养获得的细胞团呈Nestin强阳性 ,至今已在体外连续传代 8个月。培养的细胞团经 1%小牛血清诱导可分化为神经元和星形胶质细胞。结论 成功分离培养了新生大鼠脊髓神经干细胞  相似文献   

6.
兔胚胎神经干细胞的分离、培养和鉴别   总被引:2,自引:0,他引:2  
王黎明  巩晓明  胡火珍 《四川动物》2007,26(1):18-21,F0002
目的:研究兔胎脑神经干细胞体外生长特性,为探讨神经干细胞的临床应用及神经系统的发育奠定基础。方法:采用含碱性成纤维细胞生长因子(bFGF)和表皮细胞生长因子(EGF)的N2无血清培养技术,取18天龄兔胚胎脑组织,分离神经干细胞,并观察分离的细胞体外培养、增殖、分化潜能,免疫组化鉴定。结果:从18天龄兔胎脑皮质和纹状体中成功分离出具有自我更新和多分化潜能的神经干细胞,在无血清培养时细胞呈半贴壁状态生长,形成神经球,可传代。细胞呈Nestin免疫反应阳性;在含血清培养基中培养时则分化,分化后的细胞表达神经元细胞、星形胶质细胞和少突胶质细胞的特异性抗原。结论:来自兔胎脑神经干细胞能在体外培养、增殖并保持传代能力。无血清N2EGF、bFGF培养基有利于兔胎脑神经干细胞的存活和增殖,含血清培养基能诱导兔胎脑神经干细胞分化。  相似文献   

7.
山羊胚胎大脑皮层神经干细胞分离、培养与鉴定   总被引:1,自引:0,他引:1  
目的 :从山羊胚胎大脑皮层中分离培养并鉴定神经干细胞。方法 :利用NBS培养和单细胞克隆技术在山羊胚胎大脑皮层中分离出具有单细胞克隆能力的细胞 ,并进行培养、传代、分化观察 ,采用免疫组化检测克隆细胞的神经巢蛋白 (Nestin)抗原和分化后特异性成熟神经细胞抗原的表达。结果 :从胚龄 2 4~ 30d的新鲜山羊胚胎大脑皮层中成功分离出神经干细胞 ,该细胞具有连续克隆能力 ,可传代培养 ,表达神经巢蛋白抗原。分化后的细胞表达神经元细胞、胶质细胞和少突胶质细胞的特异性抗原。结论 :山羊胚胎大脑皮层中存在具有自我更新能力和多分化潜能的神经干细胞。  相似文献   

8.
目的:观察大鼠脊髓匀浆上清诱导骨髓间充质干细胞(mesenchymal stem cells,MSCs)形成的神经元样细胞形态特征.方法:通过贴壁法培养分离大鼠骨髓MSCs,体外扩增纯化后加入正常大鼠脊髓匀浆上清诱导72h,倒置显微镜下观察诱导前后细胞的形态结构.激光共聚焦显微镜观测钙离子细胞形态和荧光强度变化,免疫细胞化学方法鉴定诱导后细胞的表型特征.结果:倒置显微镜下可见MSCs呈纺锤形和多角形,核居中,有1-2个核仁,诱导后细胞呈神经元样,细胞伸出较长的轴突样和树突样突起.免疫细胞化学法显示NSE(神经元特异性烯醇化酶)、NF(神经丝蛋白)阳性,GFAP(神经胶质细胞酸性蛋白)阴性.共聚焦显微镜扫描脊髓匀浆上清诱导前细胞形态呈细长的梭形,细胞核不明显,胞体染色强,突起染色弱,荧光像素值低;诱导后,细胞呈现神经元样形态,胞体大,有多个突起,胞体及各突起染色强,荧光像素值高.结论:大鼠脊髓匀浆上清液可在体外诱导骨髓间充质干细胞分化为神经元样细胞.  相似文献   

9.
目的:研究麝香水溶物对培养的大鼠神经干细胞的生长、分化和电转染率的影响。方法:在培养基中加入不同浓度的麝香水溶性提取物后,观察大鼠神经干细胞的生长分化情况;利用表达增强型绿色荧光蛋白的质粒pEGFP-C1,对麝香水溶物处理的神经干细胞进行电穿孔转染,调查电转染率。结果:麝香水溶物处理后的大鼠神经干细胞的细胞团分散,神经突起增多、变长,贴壁细胞增加,细胞形态呈多样性。在0.3‰浓度下,神经干细胞有向神经胶质样细胞分化的趋势。对于麝香处理后变化的细胞,再转到正常培养基中后,细胞基本都能恢复到正常的神经干细胞形态,浓度较高(3‰)时,细胞的恢复能力下降,部分细胞因细胞膜受损严重而死亡。电转染结果表明,麝香处理后发生变化的细胞对pEGFP-C1的电转染率明显提高。结论:麝香水溶物能促进大鼠神经干细胞团的分散和细胞贴壁、变形,并有向神经胶质样细胞分化的趋势。同时可以提高神经干细胞对pEGFP-C1的电转染率。  相似文献   

10.
牛胚胎生殖细胞的分离与培养   总被引:2,自引:0,他引:2  
胚胎生殖细胞 (Embryonicgermcells,EG)是由生殖嵴原始生殖细胞 (Primordialgermcells,PGCs)中分离得到的一种未分化而多潜能的干细胞。牛EG细胞的研究在EG细胞核移植、转基因及建立生物反应器方面具有广阔的应用前景。本研究从 2 9- 70日龄牛胎儿PGCs分离得到EG细胞 ,经过抑制分化培养 ,其中一个细胞系传至 6代。所分离得到的EG细胞具有典型的EG细胞形态 ,AP及PAS染色呈阳性 ,核型正常 ,同时观察到这些细胞在体外进行自发性分化 ,可形成类胚体、成纤维样细胞及神经样细胞  相似文献   

11.
12.
13.
14.
15.
16.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

17.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号