首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Environmental exposure to inorganic arsenic compounds has been reported to have serious health effects on humans. Recent studies reported that arsenic targets endothelial cells lining blood vessels, and endothelial cell activation or dysfunction, may underlie the pathogenesis of arsenic-induced diseases and developmental toxicity. It has been reported that microRNAs (miRNAs) may act as an angiogenic switch by regulating related genes. The present study was designed to test the hypothesis that arsenite-regulated miRNAs play pivotal roles in arsenic-induced toxicity. Fertilized eggs were injected via the yolk sac with 100 nM sodium arsenite at Hamburger-Hamilton (HH) stages 6, 9, and 12, and harvested at HH stage 18. To identify the individual miRNAs and mRNAs that may regulate the genetic network, the expression profiles of chick embryos were analyzed by microarray analysis. Microarray analyses revealed that the expression of a set of miRNAs changed after arsenite administration, especially miRNA-9, 181b, 124, 10b, and 125b, which exhibited a massive decrease in expression. Integrative analyses of the microarray data revealed that several miRNAs, including miR-9 and miR-181b, might target several key genes involved in arsenic-induced developmental toxicity. A luciferase reporter assay confirmed neuropilin-1 (Nrp1) as a target of mir-9 and mir-181b. Data from the transwell migration assay and the tube-formation assay indicated that miR-9 and mir-181b inhibited the arsenic-induced EA.hy926 cell migration and tube formation by targeting NRP1. Our study demonstrates that the environmental toxin, sodium arsenite, induced angiogenesis by altering the expression of miRNAs and their cognate mRNA targets.  相似文献   

3.
4.
Emerging data implicate microRNAs (miRNAs) in the regulation of synaptic structure and function, but we know little about their role in the regulation of neurotransmission in presynaptic neurons. Here, we demonstrate that the miR-310-313 cluster is required for normal synaptic transmission at the Drosophila larval neuromuscular junction. Loss of miR-310-313 cluster leads to a significant enhancement of neurotransmitter release, which can be rescued with temporally restricted expression of mir-310-313 in larval presynaptic neurons. Kinesin family member, Khc-73 is a functional target for miR-310-313 as its expression is increased in mir-310-313 mutants and reducing it restores normal synaptic function. Cluster mutants show an increase in the active zone protein Bruchpilot accompanied by an increase in electron dense T bars. Finally, we show that repression of Khc-73 by miR-310-313 cluster influences the establishment of normal synaptic homeostasis. Our findings establish a role for miRNAs in the regulation of neurotransmitter release.  相似文献   

5.
6.
A family of three position-specific (PS) integrins are expressed at the Drosophila neuromuscular junction (NMJ): a beta subunit ((betaPS), expressed in both presynaptic and postsynaptic membranes, and two alpha subunits (alphaPS1, alphaPS2), expressed at least in the postsynaptic membrane. PS integrins appear at postembryonic NMJs coincident with the onset of rapid morphological growth and terminal type-specific differentiation, and are restricted to type I synaptic boutons, which mediate fast, excitatory glutamatergic transmission. We show that two distinctive hypomorphic mutant alleles of the beta subunit gene myospheroid (mys(b9) and mys(ts1)), differentially affect betaPS protein expression at the synapse to produce distinctive alterations in NMJ branching, bouton formation, synaptic architecture and the specificity of synapse formation on target cells. The mys(b9) mutation alters betaPS localization to cause a striking reduction in NMJ branching, bouton size/number and the formation of aberrant 'mini-boutons', which may represent a developmentally arrested state. The mys(ts1) mutation strongly reduces betaPS expression to cause the opposite phenotype of excessive synaptic sprouting and morphological growth. NMJ function in these mutant conditions is altered in line with the severity of the morphological aberrations. Consistent with these mutant phenotypes, transgenic overexpression of the betaPS protein with a heat-shock construct or tissue-specific GAL4 drivers causes a reduction in synaptic branching and bouton number. We conclude that betaPS integrin at the postembryonic NMJ is a critical determinant of morphological growth and synaptic specificity. These data provide the first genetic evidence for a functional role of integrins at the postembryonic synapse.  相似文献   

7.
The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response.  相似文献   

8.
Human mesenchymal stem cells (hMSCs) are known to have the capacity to differentiate into various cell types, including neurons. To examine our hypothesis that miRNA was involved in neuronal differentiation of hMSCs, CoCl2, a hypoxia-mimicking agent was used to induce neuronal differentiation, which was assessed by determining the expression of neuronal markers such as nestin and Tuj1. Treatment of hMSCs with CoCl2 led to increased expression of miR-124a, a neuron-specific miRNA. HIF-1α silencing and JNK inhibition abolished CoCl2-induced miR-124a expression, suggesting that JNK and HIF-1α signals were required for the miR-124a expression induced by CoCl2 in hMSCs. Overexpression of miR-124a or CoCl2 treatment suppressed the expression of anti-neural proteins such as SCP1 and SOX9. Silencing of both SCP1 and SOX9 induced neuronal differentiation of hMSCs, indicating that suppression of miR-124a targets is important for CoCl2-induced neuronal differentiation of hMSCs. Knockdown of HIF-1α or inhibition of JNK restored the expression of SCP1 and SOX9 in CoCl2-treated cells. Inhibition of miR-124a blocked CoCl2-induced suppression of SCP1 and SOX9 and abolished CoCl2-induced neuronal differentiation of hMSCs. Taken together, we demonstrate that miR-124a is critically regulates CoCl2-induced neuronal differentiation of hMSCs by suppressing the expression of SCP1 and SOX9.  相似文献   

9.
10.
The nervous system-enriched microRNA miR-124 is necessary for proper nervous system development, although the mechanism remains poorly understood. Here, through a comprehensive analysis of miR-124 and its gene targets, we demonstrate that, in the chordate ascidian Ciona intestinalis, miR-124 plays an extensive role in promoting nervous system development. We discovered that feedback interaction between miR-124 and Notch signaling regulates the epidermal-peripheral nervous system (PNS) fate choice in tail midline cells. Notch signaling silences miR-124 in epidermal midline cells, whereas in PNS midline cells miR-124 silences Notch, Neuralized and all three Ciona Hairy/Enhancer-of-Split genes. Furthermore, ectopic expression of miR-124 is sufficient to convert epidermal midline cells into PNS neurons, consistent with a role in modulating Notch signaling. More broadly, genome-wide target extraction with validation using an in vivo tissue-specific sensor assay indicates that miR-124 shapes neuronal progenitor fields by downregulating non-neural genes, notably the muscle specifier Macho-1 and 50 Brachyury-regulated notochord genes, as well as several anti-neural factors including SCP1 and PTBP1. 3'UTR conservation analysis reveals that miR-124 targeting of SCP1 is likely to have arisen as a shared, derived trait in the vertebrate/tunicate ancestor and targeting of PTBP1 is conserved among bilaterians except for ecdysozoans, while extensive Notch pathway targeting appears to be Ciona specific. Altogether, our results provide a comprehensive insight into the specific mechanisms by which miR-124 promotes neuronal development.  相似文献   

11.
MicroRNAs (miRs) are short endogenous RNAs that regulate gene expression by incomplete pairing with messenger RNAs. An increasing number of studies show that mammalian microRNAs play fundamental roles in various aspects of cellular function including differentiation, proliferation, and cell death. Recent findings demonstrating the presence of microRNAs in mature neuronal dendrites suggest their possible involvement in controlling local protein translation and synaptic function. HIV-1 Encephalopathy (HIVE) is a manifestation of HIV-1 infection that often results in neuronal damage and dysfunction. While neurons are rarely, if ever, infected by HIV-1, they are exposed to cytotoxic viral and cellular factors including the HIV-1 transactivating factor Tat. In this study, we show that Tat deregulates expression levels of selected microRNAs, including the neuronal mir-128, in primary cortical neurons. We further show that mir-128a inhibits expression of the pre-synaptic protein SNAP25, whereas the anti-mir-128a partially restores Tat/mir-128a-induced downregulation of SNAP25 expression. Altogether, our data provide a novel mechanism by which HIV-Tat perturbs neuronal activity.  相似文献   

12.
13.
Liu M  Liu P  Zhang L  Cai Q  Gao G  Zhang W  Zhu Z  Liu D  Fan Q 《Cell research》2011,21(11):1605-1618
MicroRNA (miRNA) regulates gene expression in many cellular events, yet functions of only a few miRNAs are known in C. elegans. We analyzed the function of mir-35-41 unique to the worm, and show here that mir-35 regulates the G1/S transition of intestinal cells and germ cell proliferation. Loss of mir-35 leads to a decrease of nuclei numbers in intestine and distal mitotic gonad, while re-introduction of mir-35 rescues the mutant phenotypes. Genetic analysis indicates that mir-35 may act through Rb/E2F and SCF pathways. Further bioinformatic and functional analyses demonstrate that mir-35 targets evolutionally conserved lin-23 and gld-1. Together, our study reveals a novel function of mir-35 family in cell division regulation.  相似文献   

14.
15.
16.
Synaptic connections must be precisely controlled to ensure proper neural circuit formation. In Drosophila melanogaster, bone morphogenetic protein (BMP) promotes growth of the neuromuscular junction (NMJ) by binding and activating the BMP ligand receptors wishful thinking (Wit) and thickveins (Tkv) expressed in motor neurons. We report here that an evolutionally conserved, previously uncharacterized member of the S6 kinase (S6K) family S6K like (S6KL) acts as a negative regulator of BMP signaling. S6KL null mutants were viable and fertile but exhibited more satellite boutons, fewer and larger synaptic vesicles, larger spontaneous miniature excitatory junctional potential (mEJP) amplitudes, and reduced synaptic endocytosis at the NMJ terminals. Reducing the gene dose by half of tkv in S6KL mutant background reversed the NMJ overgrowth phenotype. The NMJ phenotypes of S6KL mutants were accompanied by an elevated level of Tkv protein and phosphorylated Mad, an effector of the BMP signaling pathway, in the nervous system. In addition, Tkv physically interacted with S6KL in cultured S2 cells. Furthermore, knockdown of S6KL enhanced Tkv expression, while S6KL overexpression downregulated Tkv in cultured S2 cells. This latter effect was blocked by the proteasome inhibitor MG132. Our results together demonstrate for the first time that S6KL regulates synaptic development and function by facilitating proteasomal degradation of the BMP receptor Tkv.  相似文献   

17.
18.
We conducted a large-scale screen for Drosophila mutants that have structural abnormalities of the larval neuromuscular junction (NMJ). We recovered mutations in wishful thinking (wit), a gene that positively regulates synaptic growth. wit encodes a BMP type II receptor. In wit mutant larvae, the size of the NMJs is greatly reduced relative to the size of the muscles. wit NMJs have reduced evoked excitatory junctional potentials, decreased levels of the synaptic cell adhesion molecule Fasciclin II, and synaptic membrane detachment at active zones. Wit is expressed by a subset of neurons, including motoneurons. The NMJ phenotype is specifically rescued by transgenic expression of Wit only in motoneurons. Thus, Wit appears to function as a presynaptic receptor that regulates synaptic size at the Drosophila NMJ.  相似文献   

19.
20.
The synaptic growth of neurons during the development and adult life of an animal is a very dynamic and highly regulated process. During larval development in Drosophila new boutons and branches are added at the glutamatergic neuromuscular junction (NMJ) until a balance between neuronal activity and morphological structures is reached. Analysis of several Drosophila mutants suggest that bouton number and size might be regulated by separate signaling processes [Budnik, V., 1996. Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr. Opin. Neurobiol. 6, 858-867.]. Here we show a new role for Hangover as a negative regulator of bouton number at the NMJ. The hangover gene (hang) encodes a nuclear zinc finger protein. It has a function in neuronal plasticity mediating ethanol tolerance, a behavior that develops upon previous experience with ethanol. hangAE10 mutants have more boutons and an extended synaptic span. Moreover, Hang expression in the motoneuron is required for the regulation of bouton number and the overall length of muscle innervation. However, the increase in bouton number does not correlate with a change in synaptic transmission, suggesting a mechanism independent from neuronal activity leads to the surplus of synaptic boutons. In contrast, we find that expression levels of the cell adhesion molecule Fasciclin II (FASII) are reduced in the hang mutant. This finding suggests that the increase in bouton number in hang mutants is caused by a reduction in FASII expression, thus, linking the regulation of nuclear gene expression with the addition of boutons at the NMJ regulated by cell adhesion molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号