首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

2.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

3.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

4.
Lake trophic state and the limnological effects of omnivorous fish   总被引:3,自引:2,他引:1  
Ecologists have hypothesized that planktivorous fish have greater effects on the plankton and water quality of oligotrophic lakes than eutrophic lakes. We tested this hypothesis in a tank-mesocosm experiment of factorial design in which five biomass levels of filter-feeding omnivorous gizzard shad (Dorosoma cepedianum) were cross-classified with two levels of lake trophic state achieved by filling tank-mesocosms with water and plankton transported by truck from two lakes with different trophic states. The presence of gizzard shad significantly increased total phosphorus, primary productivity, chlorophyll, and particulate phosphorus (PP) 2–20 and 20–200 μm and significantly decreased Secchi depth, cladocerans, copepods and PP > 200 μm. The effects of gizzard shad on chlorophyll, Secchi depth, cladocerans, copepods and PP 2–20 and > 200 μm were dependent on lake trophic state and most intense in the eutrophic lake system. This experiment suggests that filter-feeding omnivorous fish interact synergistically with trophic state so that the limnological effects of omnivorous fish become more intense with increased eutrophication.  相似文献   

5.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

6.
Van Donk  E.  Grimm  M. P.  Gulati  R. D.  Heuts  P. G. M.  de Kloet  W. A.  van Liere  L. 《Hydrobiologia》1990,200(1):291-301
Lake Breukeleveen (180 ha, mean depth 1.45 m), a compartment of the eutrophic Loosdrecht lakes system, was selected to study the effects of whole-lake foodweb manipulation on a large scale. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970–1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2 g m−2 y−1 to 0.35 g m−2 y−1. The water transparency (Secchi-depthca. 30 cm), however, has not improved. The aim of the food-web manipulation in Lake Breukeleveen was not only to improve the light climate of the lake, but also to study if the successfull effects observed in small lakes (a few ha) can be upscaled. In March 1989 the standing crop of planktivorous and bentivorous fish populations was reduced by intensive fishery, fromca. 150 kg ha−1 toca. 57 kg ha−1. The lake was made unaccessible to fish migrating from the other lakes and it was stocked with large-sized daphnids and 0+ pike. However, water transparency did not increase in the following summer and autumn 1989, which is in contrast with great improvement in the light conditions previously observed in smaller lakes. The main explanations for the negative outcome in Lake Breukeleveen are: 1) the rapid increase of the planktivorous fish biomass and carnivorous cladocerans, predating on the zooplankton community; 2) suppression of the large daphnids by the high concentrations of filamentous cyanobacteria; 3) high turbidity of the lake due to resuspension of bottom material induced by wind, unlike in smaller lakes, and thus inability of submerged macrophytes to develop and to stabilize the ecosystem.  相似文献   

7.
Kufel  Lech 《Hydrobiologia》2001,443(1-3):59-67
Total phosphorus and total nitrogen explained a low percentage of summer chlorophyll variability in epilimnia of the Great Masurian Lakes. Division of the whole data set into two subgroups of lakes improved approximation of the chlorophyll nutrient relationship but revealed also functional differences between the lakes distinguished in that way. Chlorophyll in eutrophic lakes correlated well with nitrogen and phosphorus, that in mesotrophic lakes (those with summer chlorophyll <=22 mg m–3 as calculated in the model) was related to none of the nutrients. Higher summer chlorophyll content in epilimnetic waters was accompanied by higher chl:PP and chl:PN ratios. Algal adaptation to poor light conditions in eutrophic lakes is postulated as a possible reason for that difference.Chlorophyll – nutrient relationships varied with the trophic status of lakes. Epilimnetic chlorophyll strictly followed phosphorus changes in eutrophic lakes but did not do so in mesotrophic ones. Detailed comparison of selected meso- and eutrophic lakes showed marked differences in the seasonal changes of chlorophyll and nutrient concentrations and in sedimentation rates, especially in spring. Nutrient limitation rather than zooplankton grazing is suggested as a possible mechanism of controlling algal abundance and the sequence of spring events in a eutrophic lake. It is hypothesised that phosphorus turnover in eutrophic lakes is dominated by seasonal vertical fluxes, while in mesotrophic lakes it is more conservative with consumption and regeneration restricted mostly to metalimnion. Possible consequences of such conclusion are discussed in the paper.  相似文献   

8.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

9.
Major efforts have been made world-wide to improve the ecological quality of shallow lakes by reducing external nutrient loading. These have often resulted in lower in-lake total phosphorus (TP) and decreased chlorophyll a levels in surface water, reduced phytoplankton biomass and higher Secchi depth. Internal loading delays recovery, but in north temperate lakes a new equilibrium with respect to TP often is reached after <10–15 years. In comparison, the response time to reduced nitrogen (N) loading is typically <5 years. Also increased top-down control may be important. Fish biomass often declines, and the percentage of piscivores, the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass and the cladoceran size all tend to increase. This holds for both small and relatively large lakes, for example, the largest lake in Denmark (40 km2), shallow Lake Arresø, has responded relatively rapidly to a ca. 76% loading reduction arising from nutrient reduction and top-down control. Some lakes, however, have proven resistant to loading reductions. To accelerate recovery several physico-chemical and biological restoration methods have been developed for north temperate lakes and used with varying degrees of success. Biological measures, such as selective removal of planktivorous fish, stocking of piscivorous fish and implantation or protection of submerged plants, often are cheap versus traditional physico-chemical methods and are therefore attractive. However, their long-term effectiveness is uncertain. It is argued that additional measures beyond loading reduction are less cost-efficient and often not needed in very large lakes. Although fewer data are available on tropical lakes these seem to respond to external loading reductions, an example being Lake Paranoá, Brazil (38 km2). However, differences in biological interactions between cold temperate versus warm temperate-subtropical-tropical lakes make transfer of existing biological restoration methods to warm lakes difficult. Warm lakes often have prolonged growth seasons with a higher risk of long-lasting algal blooms and dense floating plant communities, smaller fish, higher aggregation of fish in vegetation (leading to loss of zooplankton refuge), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. The trophic structures of warm lakes vary markedly, depending on precipitation, continental or coastal regions locations, lake age and temperature. Unfortunately, little is known about trophic dynamics and the role of fish in warm lakes. Since many warm lakes suffer from eutrophication, new insights are needed into trophic interactions and potential lake restoration methods, especially since eutrophication is expected to increase in the future owing to economic development and global warming.  相似文献   

10.
Biomanipulation development in Norway   总被引:2,自引:2,他引:0  
Since 1974 several studies have been carried out in Norway to investigate the interactions between planktivorous fish, zooplankton, phytoplankton and water chemistry. Since 1978 a long-term national research program has been conducted by the Norwegian Council for Scientific and Industrial Research (NTNF). In this program several whole lake manipulations of the fish stocks have been performed to test hypotheses about trophic interactions. It was predicted that manipulations of planktivorous fish populations, might also improve water quality in lakes undergoing eutrophication. Two examples are given to illustrate the achieved results. I: Whole lake fertilization experiment (1974–1978) carried out by Langeland and Reinertsen. The results revealed the importance of top-down effects in the lake ecosystem. When cladocerans dominated, the zooplankton community was able to maintain a more or less constant phytoplankton biomass and a rather low phytoplankton production even when nutrient levels were increased. During years with rotifer dominance, algal biomass and productivity increased, despite the low amounts of added nutrients. II: Experiment performed by Reinertsen, Jensen, Koksvik, Langeland and Olsen in the eutrophic Lake Haugatjern, total elimination of the fish populations by rotenone in late 1980, resulted in a 4-fold decrease in the algal biomass. The species composition changed from the dominance of large-sizedAnabaena flos-aquae andStaurastrum luetkemuelleri to smaller, fastgrowing species and gelatinous green algae. The results are discussed in relation to management of inland waters by combined techniques of biomanipulation and reduced external nutrient supply which increase food-chain efficiency.  相似文献   

11.
Recent syntheses of trophic cascade and biomanipulation research have suggested that the effects of piscivores on planktivorous fish populations are reduced, when planktivores are capable of outgrowing predator gape limitation and in systems with complex food web interactions. These hypotheses, however, have not been tested in long-term, whole-lake, experiments where processes such as fish recruitment and compensatory food web responses may be important. We conducted a replicated whole-lake experiment to test for the effects of supplemental piscivore introductions on food webs of eutrophic lakes dominated by deep-bodied planktivores. Responses to piscivore enhancement were compared between lakes differing in food web structure due to the presence of omnivorous gizzard shad (Dorosoma cepedianum). A significant decrease in the relative abundance of juvenile planktivorous fish, and an increase in total benthic macroinvertebrate density was observed in lakes containing mainly bluegills (Lepomus machrochirus). In contrast, lakes containing gizzard shad exhibited no significant responses to piscivore manipulation. Our results support the hypothesis that food webs in lakes dominated by deep-bodied planktivorous fish species respond weakly to piscivore enhancement. In addition, our findings support the hypothesis that cascading trophic interactions are weaker in lake ecosystems with more complex food web interactions such as those containing gizzard shad.  相似文献   

12.
Lake ülemiste, the drinking water reservoir of Estonia’s capital city Tallinn, was biomanipulated by manual removal of cyprinids in 2004–2006 and its impact on water quality in the vegetation period was studied. A total biomass of 156 tonnes corresponding to 160 kg ha−1 of fish, predominantly cyprinids, were removed. A decline in the unit catches of fishing was observed. The removed fish biomass versus phosphorus concentration of the lake was considered sufficient to reduce the impact of cyprinids on water quality. The phosphorus removed within fish biomass corresponded to 38 μg l−1 and 21% of the external phosphorus load of the fishing period. The mean total phosphorus concentration dropped from >50 to ≤36 μg l−1. However, the densities of planktivorous young-of-the-year percids remained high and the role of zooplankton grazing in improving water quality was found non-significant or transient. The cladocerans biomass decreased and the small-sized Daphnia cucullata remained almost the only daphnid in Lake ülemiste during and after the manipulation. Predomination of filamentous cyanobacteria was replaced by a more diverse phytoplankton composition and co-domination of micro- and pico-sized colonial cyanobacteria during summer. Mean phytoplankton biomass decreased from 15 to 6 mg l−1 primarily as a result of decreased in-lake TP availability. The Secchi disc transparency increased only in May 2005–2007. The effects of coincidental events, a decline of external loading of phosphorus and a simultaneous flushing induced by heavy rainfall, on lake water quality are discussed with some implications to the future management of the reservoir.  相似文献   

13.
Fish kills are a common occurrence in shallow, eutrophic lakes, but their ecological consequences, especially in the long term, are poorly understood. We studied the decadal-scale response of two UK shallow lakes to fish kills using a palaeolimnological approach. Eutrophic and turbid Barningham Lake experienced two fish kills in the early 1950s and late 1970s with fish recovering after both events, whereas less eutrophic, macrophyte-dominated Wolterton Lake experienced one kill event in the early 1970s from which fish failed to recover. Our palaeo-data show fish-driven trophic cascade effects across all trophic levels (covering benthic and pelagic species) in both lakes regardless of pre-kill macrophyte coverage and trophic status. In turbid Barningham Lake, similar to long-term studies of biomanipulations in other eutrophic lakes, effects at the macrophyte level are shown to be temporary after the first kill (c. 20 years) and non-existent after the second kill. In plant-dominated Wolterton Lake, permanent fish disappearance failed to halt a long-term pattern of macrophyte community change (for example, loss of charophytes and over-wintering macrophyte species) symptomatic of eutrophication. Important implications for theory and restoration ecology arise from our study. Firstly, our data support ideas of slow eutrophication-driven change in shallow lakes where perturbations are not necessary prerequisites for macrophyte loss. Secondly, the study emphasises a key need for lake managers to reduce external nutrient loading if sustainable and long-term lake restoration is to be achieved. Our research highlights the enormous potential of multi-indicator palaeolimnology and alludes to an important need to consider potential fish kill signatures when interpreting results.  相似文献   

14.
Why biomanipulation can be effective in peaty lakes   总被引:1,自引:1,他引:0  
The effects of fish stock reduction (biomanipulation) was studied in an 85 ha shallow peaty turbid lake. The lake cleared in a 4-week period in April–May 2004, which demonstrated that biomanipulation can be effective in peaty lakes. We demonstrated that it is possible to reduce the fish stock to <25 kg ha−1 benthivorous fish and <15 kg ha−1 planktivorous fish, sufficiently low to switch the lake from a turbid to a clear state. Knowledge of lake morphology, fish stock, fish behaviour, and a variety of fishing methods was necessary to achieve this goal. It is expected that continuation of fisheries to remove young of the year planktivorous species is needed for several years, until macrophytes provide sufficient cover for zooplankton and can compete with phytoplankton. Cladocerans developed strongly after fish removal. The clearing of the lake coincided with a sudden decrease of filamentous cyanobacteria and suspended detritus, and a strong increase of Bosmina. We assume that Bosmina was able to reduce filamentous prokaryotes and detritus. After the disappearance of the cyanobacteria, Bosmina disappeared too. After the clearing of the lake Daphnia dominated in zooplankton and apparently was able to keep phytoplankton levels low. In our case, wind resuspension did not prevent biomanipulation from being successful. No correlation between windspeed and turbidity was found, neither in an 85 ha nor in a 230 ha shallow peaty lake. Regression analysis showed that on average 50% of the amount of suspended detritus can be explained by resuspension by fish and 50% by phytoplankton decomposition. The main goal of this biomanipulation experiment, clear water and increased submerged plant cover in a shallow peaty lake, was reached.  相似文献   

15.
1. As quantitative information on historical changes in fish community structure is difficult to obtain directly from fish remains in lake sediments, transfer function for planktivorous fish abundance has been developed based on zooplankton remains in surface sediment (upper 1 cm). The transfer function was derived using weighted average regression and calibration against contemporary data on planktivorous fish catch per unit effort (PF-CPUE) in multiple mesh size gill nets. Zooplankton remains were chosen because zooplankton community structure in lakes is highly sensitive to changes in fish predation pressure. The calibration data set consisted of thirty lakes differing in PF-CPUE (range 18–369 fish net–1), epilimnion total phosphorus (range 0.025–1.28 mg P l–1) and submerged macrophyte coverage (0–57%). 2. Correlation of log-transformed PF-CPUE, total phosphorus and submerged macrophyte coverage v the percentage abundance in the sediment of the dominant cladocerans and rotifers revealed that the typical pelagic species correlated most highly to PF-CPUE, while the littoral species correlated most highly to submerged macrophyte coverage. Consequently, only pelagic species were taken into consideration when establishing the fish transfer function. 3. Canonical correspondence analysis (CCA) revealed that the pelagic zooplankton assemblage was highly significantly related to PF-CPUE (axis 1), whereas the influence of total phosphorus and submerged macrophyte coverage was insignificant. Predicted PF-CPUE based on weighted average regression without (WA) and with (WA(tol)) downweighting of zooplankton species tolerance correlated significantly with the observed values (r2 = 0.64 and 0.60 and RMSE = 0.54 and 0.56, respectively). A marginally better relationship (r2 = 0.67) was obtained using WA maximum likelihood estimated optima and tolerance. 4. It is now possible, quantitatively, to reconstruct the historical development in planktivorous fish abundance based on zooplankton fossil records. As good relationships exist between contemporary PF-CPUE data and indicators such as the zooplankton/phytoplankton biomass ratio, Secchi depth and the maximum depth distribution of submerged macrophytes, it is now also possible to derive information on past changes in lake water quality and trophic structure. It will probably prove possible further to improve the transfer function by including other invertebrate remains, e.g. chironomids, Chaoborus, snails, etc., and its scope could be widened by including deeper lakes, more oligotrophic lakes, more acidic lakes and lakes with extensive submerged macrophyte coverage (in the latter case to enable use of the information in the fossil record on plant-associated cladocerans).  相似文献   

16.
The effects of biomanipulation were studied in ten Finnish lakes to determine responses in fish and plankton communities and water quality after mass removal of cyprinids. From 1997 to 2001, the fish communities shifted from the dominance of large cyprinids to an explosion of small cyprinids and a higher proportion of piscivores in effectively biomanipulated lakes (>200 kg ha−1 3 yr−1). The biomass of cyanobacteria decreased, and the duration of the blooms shortened and shifted towards the autumn. Decreased concentrations and slower cycling of nutrients and increased grazing by cladocerans probably affected the declined biomass of cyanobacteria. Less intensive sediment disturbance and increased phosphorus-retention in fast growing fish biomass may have turned the role of the fish assemblage from ‘nutrient recycler’ to ‘nutrient storage’. Increased potential grazing pressure, higher proportion of edible algae, and lower chlorophyll a:total phosphorus ratio indicated strengthened herbivore control. A high mass removal catch in relation to trophic state, low background turbidity, and bearable external loading favoured the successful biomanipulation, whereas intensive cyprinid reproduction, high nutrient loading and non-algal turbidity hindered the recovery. Three important issues should be noticed before biomanipulation in Finland: (1) careful selection of target lake, (2) well-planned, effective and long-lasting biomanipulation and (3) sustainable management of piscivores. An erratum to this article is available at .  相似文献   

17.
Lyche  Anne  Faafeng  Bjørn A.  Brabrand  Åge 《Hydrobiologia》1990,(1):251-261

The predictability of plankton response to reductions of planktivorous fish was investigated by comparing the plankton community in three biomanipulated lakes and ten unmanipulated lakes differing in intensity of fish predation. Data collected on total phosphorus, phytoplankton and zooplankton biomass and share of cyanobacteria and large grazers, as well as specific growth rate of phytoplankton, were further used to test some of the proposed underlying response-mechanisms. In the biomanipulated lakes the algal biomass and share of cyanobacteria decreased, specific growth rate of phytoplankton increased, and zooplankton biomass and share of large grazers increased or remained unchanged. This pattern was largely reflected in the differences in food-chain structure between the unmanipulated lakes with highversus those with low fish predation. The qualitative response to planktivorous fish reduction thus seems largely predictable. The biomanipulated lakes differed, however, in magnitude of response: the smallest hypertrophic, rotenone-treated lake (Helgetjern) showed the most dramatic response, whereas the large, deep mesotrophic lake (Gjersjøen), which was stocked with piscivorous fish, showed more moderate response, probably approaching a new steady state. These differences in response magnitude may be related to different perturbation intensity (rotenone-treatmentversus stocking with piscivores), food-chain complexity and trophic state. Both decreased phosphorus concentration and increased zooplankton grazing are probably important mechanisms underlying plankton response to biomanipulation in many lakes. The results provide tentative support to the hypothesis that under conditions of phosphorus limitation, increased zooplankton grazing can decrease algal biomassvia two separate mechanisms: reduction of the phosphorus pool in the phytoplankton, and reduction of the internal C:P-ratio in the phytoplankton cells.

  相似文献   

18.
Lake Timsah is considered as the biggest water body at Ismailia City with a surface area of 14?km2. It is a saline shallow water basin lies approximately mid-way between the south city of Suez and the north city of Port Said at 30o35′46.55“N and 32o19′30.54″E. Because it receives water with high and low salinities, salinity stratification is producing in the Lake Timsah, with values of 14–40‰ for the surface water and over 40‰ for the bottom water. The temperature of the lake water decreased to below 19 °C in the winter and rose to above 29?°C in the summer; the concentration of dissolved oxygen ranged between 6.5 and 12.2?l?1 and the pH fluctuated between 7.9 in its lower value and 8.2 in its higher value. Water transparency was very low as indicated by Secchi disc readings recorded during this study and varied between 0.3 and 2.7?m. The main chemical nutrient (phosphorus) reached its highest levels of 96?µg?l?1 in winter and their lowest values of 24?µg?l?1 during summer. This nutrient concentration is high especially by comparing with those of unpolluted marine waters, but is typical of the more eutrophic coastal waters worldwide. The composition and abundance of phytoplankton with dominancy of diatoms and increased population density (20,986 cell l?1) reflect the eutrophic condition of the lake. The intensive growth of phytoplankton was enriched by high concentration of chlorophyll a with annual values ranged between 6.5 and 56?µg?l?1. The objective of the present work was quantitative assessment of the quality of the water of the Lake Timsah using different approaches. During the present study, three different approaches were applied for the quantitative assessment of Lake Timsah water quality: the trophic state index (TST); trophic level index (TLI) and water quality index (WQI). Application of the trophic state and trophic level indices (TSI & TLI) revealed that the Lake Timsah has trophic indices of 60 and 5.2 for TSI and TLI, respectively. Both indices reflected the eutrophic condition of the lake waters and confirmed that the eutrophication is a major threat in the Lake Timsah. On the other hand, the WQI calculated for the Lake Timsah during the present study with an average of 49 demonstrated that the water of the Lake Timsah is bad and unsuitable for main and/or several uses. Moreover, WQI allows accounting for several water resource uses and can serve a more robust than TSI and/or TLI and can be used effectively as a comprehensive tool for water quality quantification. In conclusion, the three subjective indices used for the assessment process for the lake water are more suitable and effective for needs of the sustainable water resources protection and management of the Lake Timsah.  相似文献   

19.
The modelPCLAKE describes the phosphorus and nitrogen cycles within a shallow lake ecosystem, including the sediment and a simplified biological food web. All components are modelled in a generalized way rather than a very detailed one. This model has been applied to Lake Zwemlust, a small biomanipulated lake in The Netherlands. Formerly, this highly eutrophic lake was dominated by cyanobacteria and devoid of macrophytes. Biomanipulation was carried out in 1987 by pumping-out of the water, removal of all fish, and refilling of the lake with seepage water. The lake was restocked with some rudd, pike, zooplankton and seedlings of macrophytes, and then monitored up to 1992. Macrophytes developed rather quickly and reached their maximum biomass during the six-years period in 1989. Despite the continuously high nutrient (N and P) loading, algal biomass remained low due to nitrogen limitation, caused by competition with the macrophytes. From 1990 onwards, the macrophytes declined again and a species shift occurred, following an increase of herbivorous birds on the lake and the development of herbivorous fishes.Model simulations grossly reproduced the observed developments in Lake Zwemlust before and after the biomanipulation measures. The existence of multiple steady states at the same trophic state and the possible shift between them could be simulated well. This study also demonstrates the interrelation between system structure and the distribution and cycling of nutrients. It is concluded, that within general boundary conditions set by the trophic state of the system, the food web structure determines the actual nutrient flows and the occurrence of nutrient limitations of the primary producers. It is shown that both aspects can be integrated in one mathematical model. The long-term stability of the macrophyte dominance in the lake is discussed.  相似文献   

20.
1. Analysis of fossil diatoms and pigments was used to examine the effects of land-management practises on the trophic status of Williams Lake, a eutrophic lake in central British Columbia, Canada. Published weighted-average (WA) models were used to infer changes in total phosphorus concentration (TP) during the past 200 years. 2. Diatom-inferred TP (DI-TP) was compared to 20 years of direct chemical TP measurements to determine the accuracy of diatom-TP models in inferring mean summer TP in Williams Lake. Plant pigments were measured using high performance liquid chromatography (HPLC) to quantify historical changes in gross algal community composition and abundance and to evaluate further diatom-TP inferences. 3. Palaeolimnological analyses showed that Williams Lake has been productive throughout the last 200 years. Diatoms characteristic of alkaline, eutrophic conditions were continuously present c. 1765–1990 AD. Carotenoids from filamentous cyanobacteria (myxoxanthophyll, aphanizophyll) were regularly present in Williams Lake sediments, although cryptophytes (alloxanthin), diatoms (diatoxanthin), chlorophytes (lutein-zeaxanthin, b-phorbins), and siliceous algae (diatoms, chrysophytes) or dinoflagellates (fucoxanthin) were also important components of past algal communities. Terrestrial disturbance (railway and road constructions, cattle ranching) increased lake production, but resulted in relatively little permanent environmental change. 4. Comparison of DI-TP with measured TP (1972–91) showed that inferences from simple WA models were similar to average summer TP (39.1 vs. 35.2 μg TP l–1). Inferences resulting from data manipulations that down-weighted eutrophic lakes (outlier elimination, bootstrapping) or diatom species (square-root transformation, tolerance-weighting) were weakly and negatively correlated with measured TP, introduced bias into inference models, or underestimated measured TP. These patterns suggest that, when using diatom-TP models developed from sparsely populated regions, accurate palaeoecological inferences for TP in eutrophic lakes should avoid data manipulations which down-weight the most productive sites and taxa. 5. Comparison of DI-TP and fossil-inferred algal abundance during the past 200 years suggested that changes in nutrient inputs accounted for relatively little variation in past algal abundance. Although past changes in total algal biomass (as β-carotene) and DI-TP were broadly similar, the two variables were not significantly correlated (α = 0.05). In contrast, changes in DI-TP were significantly correlated with mean concentrations of diatom-specific carotenoids (diatoxanthin), although the explanatory power was low (r2 = 0.16). These patterns suggest that the DI-TP model reflects more closely environmental conditions in Williams Lake during periods of diatom growth, and not necessarily those when total algal biomass is greatest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号