首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Calmodulin is known to be a target for oxidation, which leads to conversion of methionine residues to methionine sulfoxides. Previously, we reported that both methionine sulfoxide reductases MsrA and MsrB were able to reduce methionine sulfoxide residues in oxidized calmodulin. In the present study, we have made use of the interaction between calmodulin and RS20, a peptide model for calmodulin targets, to probe the structural consequences of oxidation and mode of repair both by MsrA and MsrB. Isothermal titration calorimetry and differential scanning calorimetry showed that oxidized calmodulin interacts with RS20 via its C-terminal domain only, resulting in a non-productive complex. As shown by spectrofluorometry, oxidized calmodulin treated with MsrA exhibited native binding affinity for RS20. In contrast, MsrB-treatment of oxidized calmodulin resulted in 10-fold reduced affinity. Mass spectrometry revealed that the sulfoxide derivative of methionine residue 124 was differentially repaired by MsrA and MsrB. This provided a basis for rationalizing the difference in binding affinities of oxidized calmodulin reported above, since Met124 residue had been shown to be critical for interaction with some targets. This study provides the first evidence that in an oxidized polypeptide chain MetSO residues might be differentially repaired by the two Msr enzymes.  相似文献   

2.
Summary The complete amino acid sequence of the major sialoglycoproteins of horse erythrocyte membranes, glycophorin HA, was determined by manual sequencing methods, using tryptic, chymotryptic, and cyanogen bromide fragments. Glycophorin HA is a polypeptide chain of 120 amino acid residues and contains 10 oligosaccharide units attached to the amino-terminal side of the molecule. Its amino terminus is pyroglutamic acid. All of the oligosaccharides are linked O-glycosidically to threonine or serine residues. The amino acid sequence is consistent with the transmembrane orientation of glycophorins.There is no significant homology between the glycosylated domains of horse, human, and porcine glycophorins, but there is a considerable homology between the hydrophobic domains of the three glycophorins, which interact with the lipid bilayer of the erythrocyte membrane.  相似文献   

3.
Selective oxidation of methionine residues in proteins.   总被引:7,自引:0,他引:7  
Methionine residues in peptides and proteins were oxidized to methionine sulfoxides by mild oxidizing reagents such as chloramine-T and N-chlorosuccinimide at neutral and slightly alkaline pH. With chloramine-T cysteine was also oxidized to cystine but no other amino acid was modified; with N-chlorosuccinimide tryptophans were oxidized as well. In peptides and denaturated proteins all methionine residues were quantitatively oxidized, while in native proteins only exposed methionine residues could be modified. Extent of oxidation of methionine residues was determined by quantitative modification of the unoxidized methionine residues with cyanogen bromide (while methionine sulfoxide residues remained intact), followed by acid hydrolysis and amino acid analysis. Methionine was determined as homoserine and methionine sulfoxide was reduced back to methionine. Sites of oxidation were identified in a similar way by cleaving the unoxidized methionyl peptide bonds with cyanogen bromide, followed by quantitative end-group analysis of the new amino-terminal amino acids (by an automatic sequencer).  相似文献   

4.
Amino acid sequences in H(2)O(2)-oxidized bovine serum albumin (BSA) that are susceptible to proteolytic cleavage by oxidized protein hydrolase (OPH) were investigated. When oxidized BSA was treated with OPH, low-molecular-weight fragments (54, 46, 24, 22, 20, and 8 kDa) were produced as analyzed by SDS-PAGE. N-Terminal amino acid sequence analysis of these fragments indicated that oxidized BSA was cleaved by OPH at three major sites, Leu218-Ser219, Tyr410-Thr411, and Phe506-Thr507, at an early stage of the proteolytic degradation. In the three-dimensional structure of BSA deduced by computer modeling, these cleavage sites were found to be located slightly inside the BSA molecule, in positions not easily accessible by OPH. The influence of oxidation on the tertiary structure of BSA was then investigated by hypothetically replacing all the four methionine and two tryptophan residues with their oxidized forms, methionine sulfoxide and N'-formyl-kynurenine, respectively. The three-dimensional structure of the hypothetically oxidized BSA indicated that all the three cleavage sites in the protein could become more exposed to the solvent than in unoxidized BSA. These results suggest that, upon oxidation of BSA, the amino acid sequences that are potentially cleavable by OPH but present inside the molecule become exposed on the surface and susceptible to proteolysis by OPH. This is the first report demonstrating the cleavage sites of oxidized protein by oxidized protein-selective protease, suggesting the possible mechanism of oxidized protein-selective degradation by the enzyme.  相似文献   

5.
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.  相似文献   

6.
Protein oxidation and aging   总被引:13,自引:0,他引:13  
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.  相似文献   

7.
2-Hydroxy-5-nitrobenzyl bromide, at a 100-fold molar excess, was observed to react withthrombin at pH 4.0 to give a modified enzyme which possessed 20% of the fibrinogen clotting activity and 80% of the esterase activity compared to a control preparation. Spectrophotometric analysis of the modified protein indicated that this effect on catalytic activity was associated with the incorporation of 1 mol of reagent per mol of thrombin. Amino acid analysis showed no loss of amino acids other than tryptophan. The reaction of N-bromosuccinimide with thrombin at 2-fold molar excess resulted in the modification of one tryptophan per mol of enzyme with the loss of 80% of the fibrinogen clotting activity with, as above, a considerably smaller loss of esterase activity. Oxidation of thrombin with N-bromosuccinimide decreased the extent of subsequent tryptophan modification with 2-hydroxy-5-nitrobenzyl bromide. Thrombin modified with 2-hydroxy-5-nitrobenzyl bromide showed a 3-4 fold increase in Km and a decrease in V for the ester substrate. The reaction of thrombin with 2-acetoxy-5-nitrobenzyl bromide, a substrate analogue, also resulted in the inactivation of the enzyme. The data are interpreted to show the presence of a tryptophan residue at or near the enzyme's substrate binding site.  相似文献   

8.
Bacterioferritins are type-b cytochromes which resemble ferritin. Amino acid analysis combined with chemical modification and partial sequence analysis characterize bacterioferritin of Escherichia coli in terms of its primary structure. It is a protein composed of one kind of polypeptide chain that commences with methionine and terminates with glutamic acid. The length of the polypeptide chain is, tentatively, 146 residues. Besides the N-terminal methionine residue there are three more methionine residues, which yield four CNBr peptides, which have been aligned. The identity of the following positions in the sequence has been ascertained: residues 1-25, 30-37, 83-88, 127-132 and 143-146. No homology with ferritin was found.  相似文献   

9.
Structural studies on bovine γ-crystallin   总被引:4,自引:4,他引:0       下载免费PDF全文
The amino acid sequences around the cysteine residues in the lens protein, γ-crystallin, were studied. Fraction II of the γ-crystallin from calf lens (Björk, 1964) was used. The protein was oxidized with performic acid and then hydrolysed with trypsin. Six peptides containing cysteic acid were isolated. One of the peptides contained three residues of cysteic acid and the others contained one residue of cysteic acid. We conclude that there are eight unique residues of cysteic acid in the oxidized protein. Amino acid analysis suggests that there are also eight residues of cysteic acid in the molecule, which thus contains only one polypeptide chain.  相似文献   

10.
Methionine (Met) oxidation is a major degradation pathway of protein therapeutics. Met oxidation of a fully human recombinant monoclonal antibody was investigated under both chemically stressed conditions using tert-butylhydroperoxide (tBHP) and thermal stability conditions where the sample was incubated in formulation buffer at 25 degrees C for 12 months. This antibody has one Met residue on each of the light chains and four Met residues on each of the heavy chains. In the thermal stability sample, only Met residues 256 and 432 in the Fc region were oxidized to form methionine sulfoxide, while Met residues in the Fab region were relatively stable. The susceptibility of Met residues 256 and 432 was further confirmed by incubating samples with tBHP, which has been shown to induce Met oxidation. Further analysis revealed that the susceptible Met residues of each heavy chain were randomly oxidized in samples incubated with tBHP, while in the thermal stability sample, the susceptible Met residues of one heavy chain were preferentially oxidized.  相似文献   

11.
Glycophorin was incorporated into large unilamellar dioleoylphosphatidylcholine vesicles by either a detergent dialysis method using octylglucoside or a method avoiding the use of detergents. The vesicles were characterized and the permeability properties and transbilayer movement of lipids in both vesicles were investigated as a function of the protein concentration and were compared to protein-free vesicles. An insight in the permeability properties of the vesicles was obtained by monitoring the ratio potassium (permeant): dextran (impermeant) trap immediately after separation of the vesicles from the external medium. Glycophorin incorporated without the use of detergents in 1:300 protein:lipid molar ratio induces a high potassium permeability for the majority of the vesicles as judged from the low potassium trap (K+:dextran trap = 0.21). In contrast, the vesicles in which glycophorin is incorporated via the octylglucoside method (1:500 protein:lipid molar ratio) are much less permeable to potassium (K+:dextran trap = 0.67 and t12 of potassium efflux at 22°C is 7.5 h.). The relationship between protein-induced bilayer permeability and lipid transbilayer movement in both vesicle preparations is discussed. Addition of wheat-germ agglutinin to glycophorin-containing vesicles comprised of dioleoylphosphatidylcholine and total erythrocyte lipids caused no or just a small effect (less than 20% release of potassium) on the potassium permeability of these vesicles. Also, addition of lectin to dioleoylphosphatidylethanolamine-glycophorin bilayer vesicles in a 25:1 lipid:glycophorin molar ratio had no effect on the permeability characteristics of the vesicles. In contrast, addition of wheat-germ agglutinin to bilayer vesicles made of dioleoylphosphatidylethanolamine and glycophorin in a 200:1 molar ratio resulted in a release of 74% of the enclosed potassium by triggering a bilayer to hexagonal (HII) phase transition. The role of protein aggregation and the formation of defects in the lipid bilayer on membrane permeability and lipid transbilayer movement is discussed.  相似文献   

12.
The roles of methionine residues in proteins have not been well defined, but a review of available studies leads to the conclusion that methionine, like cysteine, functions as an antioxidant and as a key component of a system for regulation of cellular metabolism. Methionine is readily oxidized to methionine sulfoxide by many reactive species. The oxidation of surface exposed methionines thus serves to protect other functionally essential residues from oxidative damage. Methionine sulfoxide reductases have the potential to reduce the residue back to methionine, increasing the scavenging efficiency of the system. Reversible covalent modification of amino acids in proteins provides the mechanistic basis for most systems of cellular regulation. Interconversion of methionine and methionine sulfoxide can function to regulate the biological activity of proteins, through alteration in catalytic efficiency and through modulation of the surface hydrophobicity of the protein.  相似文献   

13.
Hollemeyer K  Heinzle E  Tholey A 《Proteomics》2002,2(11):1524-1531
Oxidation of methionine residues in peptides and proteins occurs in vivo or may be an artifact resulting from purification steps. We present a three step method for the localization of methionine sulfoxides in peptides with two methionine residues. In the first step, the N-terminus as well as other reactive side chain functions are blocked by acetylation. The resulting protected peptides are cleaved by cyanogen bromide. The cleavage does not occur at methionine sulfoxide but only at reduced methionine residues forming new amino termini. The newly formed amino group is then derivatized with a bromine containing compound in the last step of the procedure. The resulting peptide can easily be identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry using both the characteristic isotope pattern of the halogen and the metastable loss of methanesulfenic acid from oxidized residues. This procedure allows the unequivocal localization of oxidized methionines even in complex peptide mixtures.  相似文献   

14.
Glycophorin A is the major sialoglycoprotein of the human erythrocyte membrane. Structural studies indicate that this molecule is made up of 3 domains composed of 2 hydrophilic segments which are separated by a region of 22 nonpolar amino acids. The N-terminal half of the molecule contains all the carbohydrate associated with this protein. Glycophorin A forms high-molecular-weight complexes which can be dissociated only under certain conditions. The site of subunit interaction is located within the hydrophobic segment, which serves both to mediate protein-protein and protein-lipid interactions within the bilayer membrane. Glycophorin A spans the membrane presumably as a demeric complex with the carboxyterminal ends extending into the cytoplasm of the red cell. The transmembrane nature of the polypeptide chains finds strong support from the use of specific antibody-ferritin conjugates applied to thin sections of fixed and frozen intact cells. Preliminary information on the analysis of human red cell variants which may lack some or all of the sialoglycopeptides are consistent with the presence in normal cells of a second sialoglycoprotein, provisionally labeled glycophorin B.  相似文献   

15.
1) The reaction of 1 H-diazotetrazole and N-bromosuccinimide with aminoacylase was studied under different conditions. A tenfold molar excess of 1 H-diazotetrazole (2 X 10(-4) M) at pH 5.5 abolishes the catalytic activity of the enzyme while modifying only two tryptophan residues. No other amino acid reacted under these conditions as tested by amino acid analysis. 2) With a 40-fold molar excess of N-bromosuccinimide (8 X 10(-4)M) at pH 5.0, two tryptophan residues of the enzyme were oxidized with complete loss of activity. Under these conditions no significant cleavage of the polypeptide chain was observed. Neither tyrosine nor histidine was modified by this reagent, up to a 100-fold molar excess. 3) Substrates and reversible (N-tosylalanine) and irreversible (TosPheCH2Cl) inhibitors of the enzyme do not protect the two reactive tryptophans against the modification reagents. Under more drastic conditions, lysine, tyrosine and histidine residues are also modified by the reagents.  相似文献   

16.
Human red cell glycophorin A shows an equilibrium between dimeric and monomeric forms which have been disignated PAS-1 and PAS-2, respectively. This equilibrium, which is dependent upon protein concentration is achieved by incubation in sodium dodecyl sulfate solutions at elevated temperatures and is assayed by sodium dodecyl sulfate gel electrophoresis. Carboxymethylation of glycophorin A in guanidine hydrochloride or urea alters the interactions between polypeptide chains so that the lower molecular weight form (PAS-2) is obtained much more readily. If the carboxymethylation is performed at pH 3.0 the reaction is limited to the two methionine residues of glycophorin A which are located at positions 8 and 81 in the sequence. In the presence of sodium dodecyl sulfate, only one of the two methionine residues is carboxymethylated, and glycoprotein modified under these conditions does not exhibit the change in electrophoretic mobility. Experiments with [1-14C]iodoacetic acid demonstrated that Met-81, located in the hydrophobic domain of the protein, is the residue protected by sodium dodecyl sulfate. Modification of Met-81 destabilizes the dimeric form relative to the monomer by weakening the interactions between polypeptide chains. The experiments described in this paper confirm that the hydrophobic domain of glycophorin A is involved in subunit interactions and that Met-81 plays a critical role in those interactions.  相似文献   

17.
Glycophorin, the MN glycoprotein from the erythrocyte membrane, was recombined with egg phosphatidylcholine and with the total lipid extract from human erythrocyte membranes in a membranous form. 31P-nuclear magnetic resonance (NMR) spectra of the recombinants resembled spectra obtained from unsonicated phospholipid dispersions and biological membranes. The glycophorin/phospholipid ratio in these recombinants was varied from approximately 50:1 (lipid/protein) to 200:1, and 31P-NMR spectral intensities were obtained. Comparison of these intensities to that expected based on a pure phospholipid standard revealed that there were two phospholipid environments in the recombinants: one immobilized by the protein, and one slightly disordered and nonimmobilized. A relatively constant number of phospholipids were immobilized per glycophorin at all lipid/protein ratios studied.  相似文献   

18.
Y Matsui  S Natori  M Obinata 《Gene》1989,77(2):325-332
The cDNA clone for a major mouse glycophorin, transmembrane glycoprotein of erythrocytes has been isolated from a mouse spleen erythroblast cDNA library. The primary structure of a major glycophorin indicates that the protein is a single polypeptide chain of 168 amino acids (aa) clearly organized in three domains distinct in the glycophorin of other species. A strong homology of the mouse major glycophorin with human glycophorin A or B, but not with human glycophorin C is observed only in the hydrophobic stretch of 23 nonpolar aa, indicating that the major mouse glycophorin species cloned is similar to human glycophorin A. The glycophorin mRNA is absent in all non-erythroid organs or cell lines examined. The glycophorin mRNA is induced during the differentiation of murine erythroleukemia cells with dimethyl sulfoxide.  相似文献   

19.
The oxidized protein repair methionine sulfoxide reductase (Msr) system has been implicated in aging, in longevity, and in the protection against oxidative stress. This system is made of two different enzymes (MsrA and MsrB) that catalyze the reduction of the two diastereoisomers S- and R-methionine sulfoxide back to methionine within proteins, respectively. Due to its role in cellular protection against oxidative stress that is believed to originate from its reactive oxygen species scavenging ability in combination with exposed methionine at the surface of proteins, the susceptibility of MsrA to hydrogen-peroxide-mediated oxidative inactivation has been analyzed. This study is particularly relevant to the oxidized protein repair function of MsrA in both fighting against oxidized protein formation and being exposed to oxidative stress situations. The enzymatic properties of MsrA indeed rely on the activation of the catalytic cysteine to the thiolate anion form that is potentially susceptible to oxidation by hydrogen peroxide. The residual activity and the redox status of the catalytic cysteine were monitored before and after treatment. These experiments showed that the enzyme is only inactivated by high doses of hydrogen peroxide. Although no significant structural modification was detected by near- and far-UV circular dichroism, the conformational stability of oxidized MsrA was decreased as compared to that of native MsrA, making it more prone to degradation by the 20S proteasome. Decreased conformational stability of oxidized MsrA may therefore be considered as a key factor for determining its increased susceptibility to degradation by the proteasome, hence avoiding its intracellular accumulation upon oxidative stress.  相似文献   

20.
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met[O]) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.Key words: immunoglobulin gamma antibody, methionine sulfoxide, oxidation, photo-oxidation, methionine sulfoxide reductase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号