首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Selective oxidation of methionine residues in proteins.   总被引:7,自引:0,他引:7  
Methionine residues in peptides and proteins were oxidized to methionine sulfoxides by mild oxidizing reagents such as chloramine-T and N-chlorosuccinimide at neutral and slightly alkaline pH. With chloramine-T cysteine was also oxidized to cystine but no other amino acid was modified; with N-chlorosuccinimide tryptophans were oxidized as well. In peptides and denaturated proteins all methionine residues were quantitatively oxidized, while in native proteins only exposed methionine residues could be modified. Extent of oxidation of methionine residues was determined by quantitative modification of the unoxidized methionine residues with cyanogen bromide (while methionine sulfoxide residues remained intact), followed by acid hydrolysis and amino acid analysis. Methionine was determined as homoserine and methionine sulfoxide was reduced back to methionine. Sites of oxidation were identified in a similar way by cleaving the unoxidized methionyl peptide bonds with cyanogen bromide, followed by quantitative end-group analysis of the new amino-terminal amino acids (by an automatic sequencer).  相似文献   

2.
A novel procedure for isolating peptides which contain methionine is described. It relies upon the reversible increase in charge which occurs upon the alkylation of methionine by iodoacetamide. A digest of the protein is reacted with lodo[14C]acetamide under conditions which direct the reaction exclusively to the methionine residues. In this way, methionine-containing peptides are rendered radioactive and gain one positive charge per methionine simultaneously. The digest is then separated on a cation exchange column, the peptides are located by their radioactivity, and they are separately collected. The carboxyamidomethylation is reversed by thiolysis, which eliminates the extra positive charge which each methionine-containing peptide bore, decreasing their charge selectively. A second chromatographic separation, performed on the same cation exchange column, is sufficient to produce the desired peptides in a high state of purity. Equine myoglobin and bovine ribonuclease were used as models to demonstrate the feasibility of this approach. Methionine-containing tryptic peptides were purified from digests of these proteins in yields which were equivalent to those of previously reported separations. The present procedure, however, is applicable to peptide mixtures of far greater complexity than those which were derived from the model compounds and can be applied with the same success to digests of very large proteins containing many methionine residues.  相似文献   

3.
Treatment of amino acids, peptides, and proteins with aqueous solution of dimethyl sulfoxide (Me2SO) and hydrochloric acid (HCl) resulted in the oxidation of methionine to methionine sulfoxide. In addition to methionine, SH groups are also oxidized, but this reaction proceeds after a lag period of 2 h. Other amino acids are not modified by aqueous Me2SO/HCl. The reaction is strongly pH-dependent. Optimal conditions are 1.0 M HCl, 0.1 M Me2SO, at 22 degrees C. The reaction exhibits pseudo-first order kinetics with Kobs = 0.23 +/- 0.015 M-1 min-1 at 22 degrees C. Incubation of methionine sulfoxide with dimethyl sulfide and HCl resulted in the conversion of methionine sulfoxide to methionine. This reaction is fast (t1/2 = 4 min at room temperature) and quantitative at relatively anhydrous condition (i.e. at H2O:concentrated HCl:dimethyl sulfide ratio of 2:20:1). Quantitative conversions of methionine sulfoxide back to methionine are obtained in peptides and proteins as well, with no observable other side reactions in amino acids and proteins. The wide applications of this selective oxidation and reduction of methionine residues are demonstrated and discussed.  相似文献   

4.
In proteins, all amino acid residues are susceptible to oxidation by various reactive oxygen species (ROS), with methionine and cysteine residues being particularly sensitive to oxidation. Methionine oxidation is known to lead to destabilization and inactivation of proteins, and oxidatively modified proteins can accumulate during aging, oxidative stress, and in various age-related diseases. Although the efficiency of a given methionine oxidation can depend on its solvent accessibility (evaluated from a protein structure as the accessible surface area of the corresponding methionine residue), many experimental results on oxidation rate and oxidation sites cannot be unequivocally explained by the methionine solvent accessible surface area alone. In order to explore other possible mechanisms, we analyzed a set of seventy-one oxidized methionines contained in thirty-one proteins by various bioinformatics tools. In which, 41% of the methionines are exposed, 15% are buried but with various degree of flexibility, and the rest 44% are buried and structured. Buried but highly flexible methionines can be oxidized. Buried and less flexible methionines can acquire additional local structural flexibility from flanking regions to facilitate the oxidation. Oxidation of buried and structured methionine can also be promoted by the oxidation of neighboring methionine that is more exposed and/or flexible. Our data are consistent with the hypothesis that protein structural flexibility represents another important factor favoring the oxidation process.  相似文献   

5.
Reaction of H(2)O(2) with the recombinant SHa(29-231) prion protein resulted in rapid oxidation of multiple methionine residues. Susceptibility to oxidation of individual residues, assessed by mass spectrometry after digestion with CNBr and lysC, was in general a function of solvent exposure. Met 109 and Met 112, situated in the highly flexible amino terminus, and key residues of the toxic peptide PrP (106-126), showed the greatest susceptibility. Met 129, a residue located in a polymorphic position in human PrP and modulating risk of prion disease, was also easily oxidized, as was Met 134. The structural effect of H(2)O(2)-induced methionine oxidation on PrP was studied by CD spectroscopy. As opposed to copper catalyzed oxidation, which results in extensive aggregation of PrP, this reaction led only to a modest increase in beta-sheet structure. The high number of solvent exposed methionine residues in PrP suggests their possible role as protective endogenous antioxidants.  相似文献   

6.
Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.  相似文献   

7.
BACKGROUND: Peptide methionine sulphoxide reductases catalyze the reduction of oxidized methionine residues in proteins. They are implicated in the defense of organisms against oxidative stress and in the regulation of processes involving peptide methionine oxidation/reduction. These enzymes are found in numerous organisms, from bacteria to mammals and plants. Their primary structure shows no significant similarity to any other known protein. RESULTS: The X-ray structure of the peptide methionine sulphoxide reductase from Escherichia coli was determined at 3 A resolution by the multiple wavelength anomalous dispersion method for the selenomethionine-substituted enzyme, and it was refined to 1.9 A resolution for the native enzyme. The 23 kDa protein is folded into an alpha/beta roll and contains a large proportion of coils. Among the three cysteine residues involved in the catalytic mechanism, Cys-51 is positioned at the N terminus of an alpha helix, in a solvent-exposed area composed of highly conserved amino acids. The two others, Cys-198 and Cys-206, are located in the C-terminal coil. CONCLUSIONS: Sequence alignments show that the overall fold of the peptide methionine sulphoxide reductase from E. coli is likely to be conserved in many species. The characteristics observed in the Cys-51 environment are in agreement with the expected accessibility of the active site of an enzyme that reduces methionine sulphoxides in various proteins. Cys-51 could be activated by the influence of an alpha helix dipole. The involvement of the two other cysteine residues in the catalytic mechanism requires a movement of the C-terminal coil. Several conserved amino acids and water molecules are discussed as potential participants in the reaction.  相似文献   

8.
Cleavage reactions at backbone loci are one of the consequences of oxidation of proteins and peptides. During α‐amidation, the Cα–N bond in the backbone is cleaved under formation of an N‐terminal peptide amide and a C‐terminal keto acyl peptide. On the basis of earlier works, a facilitation of α‐amidation by the thioether group of adjacent methionine side chains was proposed. This reaction was characterized by using benzoyl methionine and benzoyl alanyl methionine as peptide models. The decomposition of benzoylated amino acids (benzoyl‐methionine, benzoyl‐alanine, and benzoyl‐methionine sulfoxide) to benzamide in the presence of different carbohydrate compounds (reducing sugars, Amadori products, and reductones) was studied during incubation for up to 48 h at 80 °C in acetate‐buffered solution (pH 6.0). Small amounts of benzamide (0.3–1.5 mol%) were formed in the presence of all sugars and from all benzoylated species. However, benzamide formation was strongly enhanced, when benzoyl methionine was incubated in the presence of reductones and Amadori compounds (3.5–4.2 mol%). The reaction was found to be intramolecular, because α‐amidation of a similar 4‐methylbenzoylated amino acid was not enhanced in the presence of benzoyl‐methionine and carbohydrate compounds. In the peptide benzoyl‐alanyl‐methionine, α‐amidation at the methionine residue is preferred over α‐amidation at the benzoyl peptide bond. We propose here a mechanism for the enhancement of α‐amidation at methionine residues. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Pan B  Abel J  Ricci MS  Brems DN  Wang DI  Trout BL 《Biochemistry》2006,45(51):15430-15443
The effect of protein conformation on the rate of chemical degradation is poorly understood. To address the role of structure on chemical degradation kinetics, comparative oxidation studies of methionine residues in recombinant human granulocyte colony-stimulating factor (rhG-CSF) were performed. The kinetics of oxidation of methionine residues by hydrogen peroxide (H2O2) in rhG-CSF and corresponding chemically synthesized peptides thereof was measured at different temperatures. To assess structural effects, equilibrium denaturation experiments also were conducted on rhG-CSF, yielding the free energy of unfolding as a function of temperature. A comparison of the relative rates of oxidation of methionine residues in short peptides with those of corresponding methionine residues in rhG-CSF yields an understanding of how protein tertiary structure affects oxidation reactions. For the temperature range that was studied, 4-45 degrees C, the oxidation rate constants followed an Arrhenius equation quite well, suggesting the lack of temperature-induced local structural perturbations that affect chemical degradation rates. One of the four methionine residues, Met 122, exhibited an activation energy significantly different from that of the corresponding peptide. Extrapolation of kinetic data predicts non-Arrhenius behavior around the melting temperature. Three phenomenological models based on different mechanisms are discussed, and an application to shelf life prediction of pharmaceuticals is presented.  相似文献   

10.
O Leon  L H Schulman 《Biochemistry》1987,26(22):7113-7121
A new method has been developed to couple a lysine-reactive cross-linker to the 4-thiouridine residue at position 8 in the primary structure of the Escherichia coli initiator methionine tRNA (tRNAfMet). Incubation of the affinity-labeling tRNAfMet derivative with E. coli methionyl-tRNA synthetase (MetRS) yielded a covalent complex of the protein and nucleic acid and resulted in loss of amino acid acceptor activity of the enzyme. A stoichiometric relationship (1:1) was observed between the amount of cross-linked tRNA and the amount of enzyme inactivated. Cross-linking was effectively inhibited by unmodified tRNAfMet, but not by noncognate tRNAPhe. The covalent complex was digested with trypsin, and the resulting tRNA-bound peptides were purified from excess free peptides by anion-exchange chromatography. The tRNA was then degraded with T1 ribonuclease, and the peptides bound to the 4-thiouridine-containing dinucleotide were purified by high-pressure liquid chromatography. Two major peptide products were isolated plus several minor peptides. N-Terminal sequencing of the peptides obtained in highest yield revealed that the 4-thiouridine was cross-linked to lysine residues 402 and 439 in the primary sequence of MetRS. Since many prokaryotic tRNAs contain 4-thiouridine, the procedures described here should prove useful for identification of peptide sequences near this modified base when a variety of tRNAs are bound to specific proteins.  相似文献   

11.
Reexamination of the molecular mass and the amino acid composition of Serratia protease revealed the presence of 1 mol of methionine per mol of protein (about 46K daltons), and this was confirmed by BrCN cleavage followed by separation of the two fragments. The sole methionine residue was located near the middle region of the molecule. The amino(N)-terminal sequence was determined by Edman degradation of the protein and studies of several proteolytic peptides, establishing a sequence of 18 residues with a heterogeneous N-terminus. The carboxyl(C)-terminal sequence was determined by carboxypeptidase A digestion and tritium-labeling of the citraconylated C-terminal half segment to be -Phe-Ile-Val. The sequences of a total of 53 residues containing the methionine residue and a total of 38 residues containing two histidine residues were established by the application of various conventional methods to a BrCN peptide and several proteolytic peptides. The segment containing the histidine residues was homologous with that containing the two histidine residues chelating the zinc atom of thermolysin. The 38-residue segment may be directly connected to the 53-residue segment.  相似文献   

12.
1. The size of nascent globin peptides from which the N-terminal methionine residue is cleaved has been investigated by comparing the proportion of N-terminal methionine and valine in short and long chains. Nascent chains were labelled in rabbit reticulocyte lysates, fractionated according to length by chromatography on Sephadex G-50, and analysed by the Edman degradation of selected pooled fractions. It was found that different peptide fractions contained either methionine or valine, but not both, as the N-terminal residue. Methionine was present at the N-terminus of globin chains containing up to approx. 50 amino acids whereas valine was found to be the N-terminal amino acid of longer peptides. 2. In similar experiments with nascent proteins of rat liver, labelled either in vivo or in a cell-free system containing microsomal material and cell sap, evidence was obtained for the presence of methionine at the N-terminus of nascent chains up to approx. 65 amino acid residues long. Thus protein synthesis in liver appears to be initiated also by methionine, but in this case cleavage takes place somewhat later during peptide elongation than in globin synthesis.  相似文献   

13.
After acute myocardial infarction (AMI), infiltrating proinflammatory cells generate two-electron oxidants such as hypochlorous acid (HOCl). Myoglobin (Mb) is present at approximately 0.3 mM in cardiomyocytes and, therefore, represents a significant target for oxidation. Exposure of horse Mb (50 microM) to reagent HOCl (0-500 microM) or activated human neutrophils (4-40x10(6) cells/ml) yielded oxidized Mb (Mb(ox)) as judged by amino acid analysis and peptide mass mapping. HOCl/Mb ratios of 1-5 mol/mol gave Mb(ox) with up to four additional oxygen atoms. Hydrolysis of Mb(ox) followed by amino acid analysis indicated that methionine (Met) and tryptophan (Trp) residues were modified by HOCl. Peptide mass mapping revealed that Met55 was oxidized at a lower HOCl/Mb ratio than Met131 and this preceded Trp7/14 modification (susceptibility Met55>Met131>Trp7>Trp14). Incubation of Mb with activated neutrophils and physiological chloride anion yielded Mb(ox) with a composition similar to that determined with HOCl/Mb ratios <2 mol/mol, with oxidation of Met, but not Trp, detected. These data indicate that Mb undergoes site-specific oxidation depending on the HOCl/protein ratio. As Mb is released from necrotic cardiomyocytes into the vasculature after AMI, HOCl-modified Mb may be a useful surrogate marker to gauge the extent of myocardial inflammation.  相似文献   

14.
1, 2-Cyclohexanedione reacts specifically with the guanidino group of arginine or arginine residues at pH 8 to 9 in sodium borate buffer in the temperature range of 25-40 degrees. The single product, N-7, N-8-(1,2-dihydroxycyclohex-1,2-ylene)-L-arginine (DHCH-arginine) is stable in acidic solutions and in borate buffers (pH 8 to 9). DHCH-Arginine is converted to N-7-adipyl-L-arginine by periodate oxidation. The structures of the two compounds were elucidated by chemical and physicochemical means. Arginine or arginyl residues can be regenerated quantitatively from DHCH-arginine by incubation at 37 degrees in hydroxylamine buffer at pH 7.0 FOR 7 TO 8 hours. Analysis of native egg white lysozyme and native as well as oxidized bovine pancreatic RNase, which were treated with cyclohexanedione, showed that only arginine residues were modified. The utility of the method in sequence studies was shown on oxidized bovine pancreatic ribonuclease A. Arginine modification was complete in 2 hours at 35 degrees in borate buffer at pH 9.0 with a 15-fold molar excess of the reagent. The derived peptides showed that tryptic hydrolysis was entirely limited to peptide bonds involving lysine residues, as shown both by two-dimensional peptide patterns and by isolation of the resulting peptides. The stability of DHCH-arginyl residues permits isolation of labeled peptides.  相似文献   

15.
Methionine sulfoxide in peptides and proteins was determined by use of 3 N p-toluenesulfonic acid as a hydrolyzing agent. Samples were hydrolyzed at 110 degrees C for 22 h in an evacuated sealed tube and analyzed for amino acid content. Amino acid analysis showed that the recovery of methionine sulfoxide from a synthetic peptide and its mixture with proteins was consistently better than 90%. The recovery of all other amino acids except tryptophan was complete, and was similar to that observed after hydrolysis with 6 N HCl. The presence of carbohydrates had no effect on the yield. Thus, the present procedure can be used for general and simultaneous determination of methionine sulfoxide as well as other amino acids in proteins.  相似文献   

16.
Irreversible cross-links are increasingly being recognized as important posttranslational oxidative protein modifications that contribute to tissue injury during oxidative stress and inflammation. They also have a structural function in extracellular matrix proteins such as collagen IV. Likely contenders for forming such cross-links are the reactive halogen species that are generated by neutrophils and eosinophils, including hypochlorous acid, hypobromous acid, and their related haloamines. Methionine residues are kinetically preferred targets for these oxidants and oxidation can potentially result in sulfilimine (>SN–) bonds with amines. Therefore, we investigated whether oxidation of methionine in the model peptide formyl-Met-Leu-Phe-Lys (fMLFK) produces cross-links with lysine residues, using mass spectrometry to characterize the products. As expected, the sulfoxide was the major product with each reactive halogen species. However, intra- and intermolecular cross-linked products were also formed. Isomers of an intramolecular sulfilimine were readily produced by hypobromous acid and bromamines, with hypochlorous acid forming lesser amounts. The predominant cross-link with chloramines was an intermolecular bond between the sulfur of fMLFK and the amine derived from the chloramine. Reactive halogen species also formed these sulfilimine cross-links in other peptides that contain methionine. We propose that protein cross-links involving methionine and amine residues will form via this mechanism when granulocytes are activated at sites of inflammation. Our results also support the proposal that reactive halogen species generated by the peroxidase peroxidasin could be responsible for the sulfilimine bonds that are integral to the structure of collagen IV.  相似文献   

17.
ApoA-I and apoC-II are eluted in two isoforms and apoC-III2 is eluted in three isoforms by reversed phase high performance liquid chromatography (HPLC). The structural basis of these nongenetic heterogeneities was unravelled using HPLC of proteolytic peptides and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In apoA-I, the chromatographic microheterogeneity was caused by the formation of methionine sulfoxides (MetSO). However, only residues Met112 and Met148 were found oxidized, whereas Met86 was unaffected and also resistant towards artificial oxidation. To assess whether and to what extent amino acid substitutions in apoA-I might affect methionine sulfoxidation, the tryptic peptides of 13 different mutant apoA-I proteins from 24 heterozygous apoA-I variant carriers were analyzed by HPLC. In normal apoA-I, the ratios MetSO112/Met112 and MetSO148/Met148 were highly variable. By contrast, the relative ratio of oxidation of methionine residues 112 and 148 was constant. The amino acid changes Lys107----Met, Lys107----O, Glu139----Gly, Glu147----Val, and Pro165----Arg resulted in the preferential oxidation of Met112, and Asp103----Asn resulted in a preferential oxidation of Met148; whereas Pro3----Arg, Pro3----His, Pro4----Arg, Asp89----Glu, Ala158----Asp, Glu198----Lys, and Asp213----Gly had no impact. ApoC-II and apoC-III isoforms differed by the oxidation of the two methionine residues in these proteins. Whereas in apoC-II both methionine residues were oxidized in parallel, in apoC-III the two methionine residues differed in their susceptibility towards oxidation. We conclude that the formation of MetSO depends on the molecular microenvironment within a protein.  相似文献   

18.
Circular dichroism (CD) studies of parathyroid hormone (PTH), its oxidized forms, and some fragments of the hormone are described. The CD spectrum of native PTH (84 amino acids) and the active fragment, 1-34 PTH, suggests that most of the secondary structure resides in the amino-terminal segment of this hormone. Oxidation of the methionine residue at position 18 has a small impact on secondary structure, whereas oxidation of the methionine at position 8 produces substantial changes. Oxidation of both methionines produces secondary structure changes that are greater than the sum of those seen upon oxidation of the individual methionines. The CD spectrum for the 3-34 fragment of PTH is identical to that of the 1-34 fragment, and that of the 7-34 fragment is only slightly different. The spectra of the 13-34 and 19-34 fragments are markedly altered from that of the 1-34 peptide, and those of the 9-84 and 19-84 fragments of native PTH are significantly different from the intact hormone. Computer-assisted estimates of secondary structure content, and difference spectra, were utilized to evaluate the secondary structure content of the peptides. These results suggest that residues 6-12 are important in formation of helical secondary structure and that a reverse turn may be important for the folding of PTH into a conformation with high affinity for receptors. Residues 1 and 2 appear to make no contribution to the secondary structure and may be directly involved in activation of receptors.  相似文献   

19.
The oxidation of the activated form of recombinant coagulation factor VII (FVIIa) by hydrogen peroxide has been studied. The three predominant oxidation products observed at pH 7.5 have been characterized as methionine sulfoxide derivatives of the parent protein involving two of the four methionine residues of the protein, Met298 and Met306. We conclude that oxidation of FVIIa with hydrogen peroxide only affects methionine residues and selectively oxidizes those which are readily accessible to the solvent. The oxidation process has been studied in the pH range 3.5-9.5. The total rate of oxidation of FVIIa as well as the formation of the three oxidation products is consistent over the pH interval 7.5-9.5. However, under acidic conditions, significant variations have been observed indicating a conformational change of FVIIa. Oxidized FVIIa had the same amidolytic activity as the native protein. The binding to soluble tissue factor (TF) was weaker after oxidation as manifested by a threefold increase in dissociation constant and the amidolytic activity in complex with soluble TF was 80% compared to that of native FVIIa. In complex with lipid surface TF, the rate of factor X activation catalyzed by oxidized FVIIa was also reduced by approximately 20% compared to that of native FVIIa. However, native and oxidized FVIIa appeared to bind lipidated TF with indistinguishable affinities.  相似文献   

20.
Biochemistry of methionine sulfoxide residues in proteins   总被引:6,自引:0,他引:6  
The oxidation of methionine to methionine sulfoxide constitutes one of the many post-translational modifications that proteins undergo. This non-enzymatic reaction has been shown to occur both in vivo and in vitro, and has been associated with the loss of biological activity in a wide variety of proteins and peptides. The presence of methionine sulfoxide residues in proteins is implicated in a variety of pathological conditions. An enzyme that is present in all organisms tested specifically catalyzes the reduction of the methionine sulfoxide residues in proteins. The physiological reductant for this enzyme appears to be thioredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号