首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The rate of transbilayer movement of dioleoylphosphatidylcholine in sonicated lipid vesicles is enhanced by at least two orders of magnitude upon incorporation of glycophorin in the bilayer.  相似文献   

2.
Glycophorin was incorporated into large unilamellar vesicles and the bilayer permeability was measured as a function of the lipid composition. In agreement with previous data (Van der Steen, A.T.M., De Kruijff, B. and De Gier, J. (1982) Biochim. Biophys. Acta 691, 13-23) it was found that glycophorin greatly increased the bilayer permeability of DOPC vesicles. This effect was observed for a large variety of phosphatidylcholines, differing in their fatty acid composition and homogeneity. In sharp contrast, it was observed that variations in the polar headgroups by incorporation of DOPE, DOPS and, to a lesser extent, cholesterol, into the DOPC/glycophorin vesicles restored the barrier function. These results are compared to the size of the particles, revealed by freeze-fracture electron microscopy on the glycophorin-containing bilayer and are discussed in the light of various types of lipid-protein interactions and protein aggregation state.  相似文献   

3.
Summary Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including31P and19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin.31P and19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.  相似文献   

4.
Multilamellar liposomes of dimyristoylphosphatidylcholine, containing 4 mol% egg phosphatidic acid show at the phase transition temperature an increased permeability for non-electrolytes of Mr values up to 900. This indicates that the packing defects occurring at the liquid crystalline/gel state phase boundary have a similar pore diameter (15–18 A) as the packing defects present in glycophorin—dioleoylphos-phatidylcholine vesicles. This suggests that packing defects at the protein—lipid interphase are the major permeation pathway of the glycophorin—dioleoylphosphatidylcholine vesicles.  相似文献   

5.
Glycophorin from human red blood cells was exposed to ozone in aqueous solution. Amino acid analysis of glycophorin exposed to a 10-fold molar excess of ozone showed that the only residue affected was methionine. Both methionine residues of the protein were oxidized to methionine sulfoxide. Exposure of the oxidized protein to cyanogen bromide caused no cleavage of the polypeptide chain. Glycophorin was incorporated into unilamellar lipid vesicles made from phosphatidylcholine. The protein containing vesicles were exposed to ozone in a 10-fold molar excess to the glycophorin. Gas chromatography of the methyl esters showed negligible change in the fatty acid composition. Amino acid analysis of the ozone-treated protein showed the oxidation of only one methionine residue per polypeptide chain to methionine sulfoxide. Ghosts of human erythrocytes were exposed to ozone. Cyanogen bromide treatment of the oxidized glycophorin yielded fragments showing that the only methionine residue oxidized by ozone was residue 8. These results indicate that in this membrane model (a) amino acid is more susceptible to ozone than is the lipid, and (b) amino acids external to the membrane are more susceptible than those in the polypeptide chain spanning the membrane.  相似文献   

6.
The effect of nonionic detergents of the n-alkyl-β-D-glucopyranoside class on the ordering of lipid bilayers and the dynamics of membrane-embedded peptides were investigated with 2H- and 31P-NMR. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was selectively deuterated at methylene segments C-2, C-7, and C-16 of the two fatty acyl chains. Two trans-membrane helices, WALP-19 and glycophorin A71-98, were synthesized with Ala-d3 in the central region of the α-helix. n-Alkyl-β-D-glucopyranosides with alkyl chains with 6, 7, 8, and 10 carbon atoms were added at increasing concentrations to the lipid membrane. The bilayer structure is retained up to a detergent/lipid molar ratio of 1:1. The insertion of the detergents leads to a selective disordering of the lipids. The headgroup region remains largely unaffected; the fatty acyl chain segments parallel to the detergent alkyl chain are only modestly disordered (10-20%), whereas lipid segments beyond the methyl terminus of the detergent show a decrease of up to 50%. The change in the bilayer order profile corresponds to an increase in bilayer entropy. Insertion of detergents into the lipid bilayers is completely entropy-driven. The entropy change accompanying lipid disorder is equivalent in magnitude to the hydrophobic effect. Ala-d3 deuterated WALP-19 and GlycA71-97 were incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine at a peptide/lipid molar ratio of 1:100 and measured above the 1,2-dimyristoyl-sn-glycero-3-phosphocholine gel/liquid-crystal phase transition. Well-resolved 2H-NMR quadrupole splittings were observed for the two trans-membrane helices, revealing a rapid rotation of the CD3 methyl rotor superimposed on an additional rotation of the whole peptide around the bilayer normal. The presence of detergent fluidizes the membrane and produces magnetic alignment of bilayer domains but does not produce essential changes in the peptide conformation or dynamics.  相似文献   

7.
(1) The effect of glycophorin, a major intrinsic glycoprotein of the human erythrocyte membrane, on lipid polymorphism has been investigated by 31P-NMR (at 36.4 MHz) and by freeze-fracture electron microscopy. (2) Incorporation of glycophorin into vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) results in the formation of unilamellar vesicles (1000–5000 Å diameter) which exhibit 31P-NMR bilayer spectra over a wide range of temperature. A reduction in the chemical shift anisotropy (Δσcsaeff) and an increase in spectral linewidth in comparison to dioleoylphosphatidylcholine liposomes may suggest a decrease in phospholipid headgroup order. (3) 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), in the presence of excess water, undergoes a bilayer to hexagonal (HII) phospholipid arrangement as the temperature is increased above 0°C. Incorporation of glycophorin into this system stabilizes the bilayer configuration, prohibiting the formation of the HII phase. (4) Cosonication of glycophorin with DOPE in aqueous solution (pH 7.4) produces small, stable unilamellar vesicles (300–1000 Å diameter), unlike DOPE alone which is unstable and precipitates from solution. (5) The current study demonstrates the bilayer stabilizing capacity of an intrinsic membrane protein, glycophorin, most likely by means of a strong hydrophobic interaction between the membrane spanning portion of glycophorin and the hydrophobic region of the phospholipid.  相似文献   

8.
Band 3 protein was reconstituted with lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine in a 2500:1 phospholipid:protein molar ratio by means of a Triton X-100/beads method. The SO2-4 permeability of the resulting vesicles was measured using an influx assay procedure in which the vesicles were sampled and subsequently eluted over Sephadex columns at appropriate time intervals. The accuracy of the assay was greatly increased by using an internal standard in order to correct for vesicle recovery. In agreement with previous work, it could be demonstrated that incorporation of band 3 in the vesicles caused an increase in SO2-4 permeability, which could be (partially) inhibited by high concentrations of DIDS or a competitive anion such as thiocyanate. However, the magnitude of the increased SO2-4 permeability was highly variable, even when vesicles were reconstituted using band 3 isolated from one batch of ghosts. In addition, the SO2-4 influx curves showed complex kinetics. These results are related to the existence of vesicle heterogeneity with respect to protein content and vesicle size as revealed by stractan density gradient centrifugation and freeze-fracture electron microscopy. Band 3 incorporation also increased the L-glucose permeability of the vesicles which could also be inhibited by DIDS. Glycophorin, which has no known transport function, reconstituted with lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine in a 400:1 phospholipid:protein molar ration increased the bilayer permeability towards SO2-4 as well as towards L-glucose. Surprisingly, the SO2-4 permeability in the vesicles could also be inhibited by DIDS and thiocyanate. It is concluded that the use of DIDS and a competitive anion, thiocyanate, in order to prove that band 3 is functionally reconstituted, is highly questionable. The increased SO2-4 and L-glucose permeability of band 3-lipid as well as glycophorin-lipid vesicles and the inhibitory action of DIDS are discussed in the light of the presence of defects at the lipid/protein interface and protein aggregation, which may induce the formation of pores. Since the band 3-lipid vesicles are more permeable for SO2-4 than for L-glucose, in contrast to the glycophorin-containing vesicles, it is suggested that some anion specificity of the increased bilayer permeability in the band 3-lipid vesicles is still preserved.  相似文献   

9.
The structural preferences of mixed lipid systems containing egg yolk or 18:1c18:1c phosphatidylethanolamine and representative detergents (Triton X-100, deoxycholate, octylglucoside and lyso-phosphatidylcholine) have been examined. It is shown that all these detergents exhibit an ability to stabilize a bilayer organization for the phosphatidylethanolamine at detergent to phosphatidylethanolamine molar ratios of 0.05 to 0.5, depending on the detergent and/or phosphatidylethanolamine species. These results are interpreted in terms of molecular shape, where the ‘inverted cone’ shape detergents combine in a complementary fashion with ‘cone shaped’ phosphatidylethanolamine to result in net bilayer structure.  相似文献   

10.
R Tampé  A von Lukas  H J Galla 《Biochemistry》1991,30(20):4909-4916
Glycophorin has been incorporated into unilamellar cholesterol-containing dimyristoylphosphatidylcholine vesicles that were reconstituted by the freeze and thaw technique. Evidence was obtained for a protein-induced structural reorganization of these mixed membranes. By differential scanning calorimetry, we were able to construct a phase diagram for the phospholipid/cholesterol mixture consisting of a liquid-ordered, a solid-ordered, and a liquid-disordered phase. Glycophorin at low molar fractions (XG less than 3 X 10(-3)) increases the relative amount of lipid in the liquid-ordered phase, which is interpreted as an enrichment of cholesterol in the vicinity of the protein. The formation of such steroid-enriched domains could be demonstrated directly by electron paramagnetic resonance using a spin-labeled cholesterol analogue. A drastic increase of the spin-spin interaction of the labeled steroid was observed in the presence of glycophorin.  相似文献   

11.
Vesicles have been prepared from 18 : 1c/18 : 1c-phosphatidylcholine with or without purified glycophorin or partially purified band 3 (obtained by organomercurial gel chromatography). The vesicles have been characterized by freeze-fracture electron microscopy, binding studies to DEAE-cellulose, 31P-NMR and K+ trap measurements. Pools of phosphatidylcholine available for exchange have been investigated using phosphatidylcholine exchange protein from bovine liver. The protein-containing vesicles both exhibit exchangeable pools larger than the fraction of phosphatidylcholine in the outer monolayer, whereas in the protein-free vesicles the exchangeable pool is consistent with the outer monolayer. The results indicate that both glycophorin and the partially purified band 3 preparation enhance the transbilayer movement of phosphatidylcholine.  相似文献   

12.
1. Sonicated glycophorin-containing vesicles of dioleoyl phosphatidylcholine have been made. The outside-inside distributions of the lipid molecules in these vesicles was measured with NMR and was found to be comparable with that of protein-free vesicles. 2. The transbilayer distribution of palmitoyl lysophosphatidylcholine in these vesicles is such that they have a significantly higher content of the lyso-compound in the inner monolayer when compared with vesicles without glycophorin. 3. Lysophosphatidylcholine, added to pre-existing glycophorin-containing vesicles, is incorporated in the outer monolayer of these vesicles. Subsequently it is able to move to the inner monolayer with an estimated half time of about 1.5 h at 4 degrees C. This was measured with 13C-NMR using [N-13CH3]lysophosphatidylcholine. 4. Treatment of co-sonicated vesicles of phosphatidylcholine and lysophosphatidylcholine containing glycophorin with the enzyme lysophospholipase results in a complete degradation of the lyso-compound. A half time of transbilayer movement of lysophosphatidylcholine during this experiment was estimated to be about 1 h at 37 degrees C.  相似文献   

13.
Studies of the influence of fatty acids, which were the component of intestinal mucosal lipids, on the permeability of several drugs across bilayer lipid membranes generated from egg phosphatidylcholine and intestinal lipid have been pursued. The permeability coefficients of p-aminobenzoic acid, salicylic acid and p-aminosalicylic acid (anionic-charged drug) increased when fatty acids such as lauric, stearic, oleic, linoleic and linolenic acid were incorporated into the bilayer lipid membranes generated from phosphatidylcholine. In the presence of methyl linoleate and oleyl alcohol, no enhancing effect on p-aminobenzoic acid transfer was obtained. The effect of fatty acids was more marked at pH 6.5 than at pH 4.5. In contrast, upon the addition of fatty acids to intestinal lipid membranes which originally contained fatty acids, the permeability coefficient of p-aminobenzoic acid tended to decrease, though the permeability through intestinal lipid membranes was larger than that of phosphatidylcholine membranes. The permeability of p-aminobenzoic acid across bilayer lipid membranes from intestinal phospholipids was significantly decreased to about equal that of phosphatidylcholine membranes, and reverted to the value of intestinal lipid membranes when fatty acids were added to intestinal phospholipids. It seemed reasonable to assume that free fatty acids in the intestinal neutral lipid fraction could contribute to the increase in the permeability of p-aminobenzoic acid. On the basis of above results, possible mechanisms for good absorbability of weakly acidic drugs from the intestine are discussed.  相似文献   

14.
A reconstitution procedure has been developed for the incorporation of the mitochondrial F0.F1-ATPase into the bilayer of egg phosphatidylcholine vesicles. The nonionic detergent, octylglucoside, egg phosphatidylcholine, and the lipid-deficient, oligomycin-sensitive F0.F1-ATPase (Serrano, R., Kanner, B., and Racker, E. (1976) J. Biol. Chem. 251, 2453-2461) were combined in a 4770:320:1 detergent/phospholipid/protein molar ratio and then centrifuged on a discontinuous sucrose gradient to isolate the F0.F1-phosphatidylcholine complex. The specific activity of the reconstituted F0.F1-ATPase was as high as 14.5 mumol/min/mg protein, whereas with no added lipid the activity ranged between 1.4 and 2.2 mumol/min/mg protein. This reconstituted preparation exhibited greater than 90% oligomycin sensitivity which demonstrated the intactness of the multisubunit enzyme complex. The phosphatidylcholine/protein molar ratio of the reconstituted F0.F1 was 250:1 with less than 0.4% of the added octylglucoside remaining. Titrations with both phosphatidylcholine and octylglucoside demonstrated that the specific activity and oligomycin sensitivity were highly dependent on the concentrations of both phospholipid and detergent in the original reconstitution mixture. Analysis of the reconstituted ATPase by electron microscopy demonstrated that the catalytic portion of the enzyme complex projected from the phospholipid bilayer with an orientation similar to that observed with submitochondrial particles. The F0.F1-phosphatidylcholine complex was able to trap inulin, which suggests a vesicular structure impermeable to macromolecules. The electrophoretic mobility of the complex was identical to that for liposomes of egg phosphatidylcholine alone. The reconstitution conditions utilized give rise to an enzyme-phospholipid complex with very low ionic charge that demonstrates high oligomycin-sensitive ATPase activity.  相似文献   

15.
16.
(1) Large unilamellar vesicles have been prepared from N-[Ne3-13C]-18 : 1c/18 : 1c-phosphatidylcholine, both with and without the major intrinsic proteins from the human erythrocyte membrane incorporated in the bilayer. (2) It is shown that the inside-outside distribution of the lipid molecules in these large unilamellar structures can be determined using 13C NMR. (3) Large vesicles of 18 : 1c/18 : 1c-phosphatidylcholine containing glycophorin show an enhanced permeability to Dy3+. It is shown that the permeability barrier of these vesicles can be restored by addition of 10 mol% 18 : 1c/18 : 1c-phosphatidylethanolamine or 1-18 : 1c-lysophosphatidylcholine.  相似文献   

17.
Specific proteins and lipids sequester to regions of cell membranes called rafts. Due to their high content of sphingomyelin (SM) and cholesterol, raft bilayers are thicker than nonraft bilayers and, at least at 4 degrees C, are resistant to Triton X-100 extraction. It has been postulated that rafts concentrate proteins with long transbilayer domains because of "hydrophobic matching" between the transbilayer domain and the thick bilayer hydrocarbon region. However, because the area compressibility and bending moduli of SM:cholesterol bilayers are larger than that of nonraft bilayers, there should be an energy cost to partition proteins or peptides into rafts. To determine the effects on peptide sorting of raft thickness and mechanical properties, we incorporated two transbilayer peptides (P-23, P-29) into bilayers composed of SM, dioleoylphosphatidylcholine, and cholesterol, separated detergent-soluble membranes (DSMs) from detergent-resistant membranes (DRMs), and measured their peptide and lipid compositions. P-23 and P-29 were designed to have transbilayer domains that matched the hydrocarbon thicknesses of DSMs and DRMs, respectively. At both 4 degrees C and 37 degrees C DSMs were enriched in dioleoylphosphatidylcholine and DRMs were enriched in SM and cholesterol. At both temperatures both P-23 and P-29 preferentially localized to DSMs, demonstrating the importance of bilayer mechanical properties relative to hydrophobic mismatch. However, at 37 degrees C significantly more P-29 than P-23 was located in DRMs, implying that hydrophobic matching played a role in peptide sorting at physiological temperature. These experiments demonstrate that the sorting of peptides as measured by detergent extraction is temperature-dependent and both bilayer mechanical properties and hydrophobic matching impact peptide distribution between DSMs and DRMs.  相似文献   

18.
Glycophorin from human erythrocytes has been incorporated into liposomes of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC). The thermal properties of unsonicated liposomes with glycophorin/lipid molar ratios up to 4·10?3 have been studied by differential scanning calorimetry and the numbers of lipids withdrawn from participation in the gel-to-lamellar phase transition were found to be 42±22 (DMPC), 197±28 (DPPC) and 240±64 (DSPC). The initial rates of agglutination of sonicated liposomes with glycophorin/lipid molar ratios up to 4·10?3 by wheat germ agglutinin in the concentration range 0–7 μM have been measured over a range of temperature. Below the gel-to-lamellar phase transition (Tc) the rates of agglutination increase with acyl chain length in the sequence DMPC < DPPC < DSPC. Agglutination is found to be second order in liposome concentration and is completely reversed on saturation of the wheat germ agglutinin-binding sites by N-acetylglucosamine. Agglutination rates decrease with increasing temperature below Tc and are largely independent of temperature above Tc. The results are discussed in relation to the clustering of glycophorin in the phospholipid bilayers and its effect on binding and subsequent interliposomal bridge formation by wheat germ agglutinin.  相似文献   

19.
The conformational space of a hydrophobic peptide fragment of glycophorin A in a lipid membrane was studied with the Monte Carlo method using the solvation model described in the first communication of this series. The simulation was performed for various starting orientations of the peptide relative the membrane bilayer: outside, inside, partially immersed, and transbilayer. We showed that the membrane substantially stabilizes the α-helical conformation of the central hydrophobic part of the glycophorin A molecule, which for the most part is immersed in the apolar core of the bilayer. For various conformational states, energy values were calculated and the orientations of the peptide relative to the membrane were characterized. Depending on the thickness of the bilayer, either an entirely α-helical conformation in transbilayer orientation or a conformation with a kink in the central part of the helix with theN- andC-termini exposed on one side of the membrane corresponds to the minimal-energy structure. The transmembrane orientation of glycophorin A is energetically advantageous when the membrane thickness is close to the length of its hydrophobic helical portion, which is consistent with the effect ofhydrophobic match observed experimentally. The prospects for further refinement of the model are discussed. For communication I, see [1].  相似文献   

20.
We have examined the interaction of the human immunodeficiency virustype 1 fusion peptide (23 amino acid residues) and of a Trp-containing analog with vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1). Both the native and the Trp-substituted peptides bound the vesicles to the same extent and induced intervesicular lipid mixing with comparable efficiency. Infrared reflection-absorption spectroscopy data are compatible with the adoption by the peptide of a main beta-sheet structure in a cospread lipid/peptide monolayer. Cryo-transmission electron microscopy observations of peptide-treated vesicles reveal the existence of a peculiar morphology consisting of membrane tubular elongations protruding from single vesicles. Tryptophan fluorescence quenching by brominated phospholipids and by water-soluble acrylamide further indicated that the peptide penetrated into the acyl chain region closer to the interface rather than into the bilayer core. We conclude that the differential partition and shallow penetration of the fusion peptide into the outer monolayer of a surface-constrained bilayer may account for the detected morphological effects. Such single monolayer-restricted interaction and its structural consequences are compatible with specific predictions of current theories on viral fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号