首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.  相似文献   

2.
Polyamines such as spermine can have interaction with protein. The aim of the present study was to investigate how spermine could influence the structure, thermal stability, and the activity of α-chymotrypsin. Kinetics, thermodynamics, molecular dynamics (MD), and docking simulations studies were conducted to investigate the effect of spermine on the activity and structure of α-Chymotrypsin (α-Chy) in 50 mM Tris–HCl buffer, with the pH 8, using different spectroscopic techniques as well as molecular docking and MD simulations. The stability and activity of α-Chy were increased in the presence of spermine. The results of the kinetic study showed that the activity of spermine was increased. Enzyme activation was accompanied by changes on the α-Chy conformation. Fluorescence intensity changes showed dynamic quenching during spermine binding. The fluorescence quenching of the α-Chy suggested the more polar location of Trp residues. Near-UV and Far-UV circular dichroism studies also demonstrated the transfer of Trp, Phe, and Tyr residues to a more flexible environment. The increase in the absorption of α-Chy in the presence of spermine was as a result of the formation of spermine–α-Chy complex. Molecular docking results revealed the presence of one binding site with a negative value for the Gibbs free energy of the binding of spermine to α-Chy. Docking study also revealed that van der Waals interactions and hydrogen bonds played a major role in stabilizing the complex.  相似文献   

3.
BackgroundHistone lysine-specific demethylase 1 (LSD1) has become a potential anticancer target for the novel drug discovery. Recent reports have shown that SP2509 and its derivatives strongly inhibit LSD1 as allosteric inhibitors. However, the binding mechanism of these allosteric inhibitors in the allosteric site of LSD1 is not known yet.MethodsThe stability and binding mechanism of allosteric inhibitors in the binding site of LSD1 were evaluated by molecular docking, ligand-based pharmacophore, molecular dynamics (MD) simulations, molecular mechanics generalized born surface area (MM/GBSA) analysis, quantum mechanics/molecular mechanics (QM/MM) calculation and Hirshfeld surface analysis.ResultsThe conformational geometry and the intermolecular interactions of allosteric inhibitors showed high binding affinity towards allosteric site of LSD1 with the neighboring amino acids (Gly358, Cys360, Leu362, Asp375 and Glu379). Meanwhile, MD simulations and MM/GBSA analysis were performed on selected allosteric inhibitors in complex with LSD1 protein, which confirmed the high stability and binding affinity of these inhibitors in the allosteric site of LSD1.ConclusionThe simulation results revealed the crucial factors accounting for allosteric inhibitors of LSD1, including different protein–ligand interactions, the positions and conformations of key residues, and the ligands flexibilities. Meanwhile, a halogen bond interaction between chlorine atom of ligand and key residues Trp531 and His532 was recurrent in our analysis confirming its importance.General significanceOverall, our research analyzed in depth the binding modes of allosteric inhibitors with LSD1 and could provide useful information for the design of novel allosteric inhibitors.  相似文献   

4.
Molecular docking of a library of all 8000 possible tripeptides to the active site of DPP-IV was used to determine their binding potential. A number of tripeptides were selected for experimental testing, however, there was no direct correlation between the Vina score and their in vitro DPP-IV inhibitory properties. While Trp-Trp-Trp, the peptide with the best docking score, was a moderate DPP-IV inhibitor (IC50 216 μM), Lineweaver and Burk analysis revealed its action to be non-competitive. This suggested that it may not bind to the active site of DPP-IV as assumed in the docking prediction. Furthermore, there was no significant link between DPP-IV inhibition and the physicochemical properties of the peptides (molecular mass, hydrophobicity, hydrophobic moment (μH), isoelectric point (pI) and charge). LIGPLOTs indicated that competitive inhibitory peptides were predicted to have both hydrophobic and hydrogen bond interactions with the active site of DPP-IV. DPP-IV inhibitory peptides generally had a hydrophobic or aromatic amino acid at the N-terminus, preferentially a Trp for non-competitive inhibitors and a broader range of residues for competitive inhibitors (Ile, Leu, Val, Phe, Trp or Tyr). Two of the potent DPP-IV inhibitors, Ile-Pro-Ile and Trp-Pro (IC50 values of 3.5 and 44.2 μM, respectively), were predicted to be gastrointestinally/intestinally stable. This work highlights the needs to test the assumptions (i.e. competitive binding) of any integrated strategy of computational and experimental screening, in optimizing screening. Future strategies targeting allosteric mechanisms may need to rely more on structure–activity relationship modeling, rather than on docking, in computationally selecting peptides for screening.  相似文献   

5.
Acetyl-CoA carboxylase (ACC) enzyme plays an important role in the regulation of biosynthesis and oxidation of fatty acids. ACC is a recognized drug target for the treatment of obesity and diabetes. Combination of ligand and structure-based in silico methods along with activity and toxicity prediction provides best lead compounds in the drug discovery process. In this study, a data-set of 100 ACC inhibitors were used for the development of comparative molecular field analysis (CoMFA) and comparative molecular similarity index matrix analysis (CoMSIA) models. The generated contour maps were used for the design of novel ACC inhibitors. CoMFA and CoMSIA models were used for the predication of activity of designed compounds. In silico toxicity risk prediction study was carried out for the designed compounds. Molecular docking and dynamic simulations studies were performed to know the binding mode of designed compounds with the ACC enzyme. The designed compounds showed interactions with key amino acid residues important for catalysis, and good correlation was observed between binding free energy and inhibition of ACC.  相似文献   

6.
Li S  Zhang J  Cao S  Han R  Yuan Y  Yang J  Yan Y  Liu D 《Biotechnology letters》2011,33(10):2005-2011
Sterol 14α-demethylase from Penicillium digitatum (PdCYP51) is a prime target of antifungal drugs for citrus disease in plants. To design novel antifungal compounds, a homology model of PdCYP51 was constructed using the recently reported crystal structure of human CYP51 as the template. Molecular docking was performed to investigate the interaction of four commercial fungicides with the modeled enzyme. The side chain of these compounds interplayed with PdCYP51 mainly through hydrophobic and van der Waals interactions. Biochemical spectra analysis of inhibitors combined with PdCYP51 are also compatible with the docking results. This is the first molecular modeling for PdCYP51 based on the eukaryotic crystal structure of CYP51. The structural information and binding site mapping of PdCYP51 for different inhibitors obtained from this study could aid in screening and designing new antifungal compounds targeting this enzyme.  相似文献   

7.
PF-4455242 and its analogues represent a new series of kappa opioid selective antagonists that demonstrate high selectivity and potency. We investigated their binding mode to the κ-receptor via docking and molecular dynamics simulations. The ranking of the predicted binding free energies is consistent with experimental results. Detailed binding free energies between antagonists and individual protein residues were calculated, and key residues involved in binding were identified. Deviation of the active site residues was investigated, and the results show that Gln115, Leu135, Tyr139, Trp287 and Tyr313 deviate greatly from the reference structure. Information obtained from molecular modeling studies will aid in the design of potent kappa receptor antagonists.  相似文献   

8.
Despite the availability of effective chemotherapy and a moderately protective vaccine, new anti-tuberculosis agents are urgently needed to decrease the global incidence of tuberculosis (TB) disease. The MurB gene belongs to the bacterial cell wall biosynthesis pathway and is an essential drug target in Mycobacterium tuberculosis (Mtb) that has no mammalian counterparts. Here, we present an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on Mtb-MurB oxidoreductase enzyme. A homology model of Mtb-MurB enzyme was built for the first time in order to carry out structure-based inhibitor design. The accuracy of the model was validated using different techniques. The molecular docking study on this enzyme was undertaken using different classes of well known MurB inhibitors. Estimation of binding free energy by docking analysis indicated the importance of Tyr155, Arg156, Ser237, Asn241 and His304 residues within the Mtb-MurB binding pocket. Our computational analysis is in good agreement with experimental results of site-directed mutagenesis. The present study should therefore play a guiding role in the experimental design of Mtb-MurB inhibitors for in vitro/in vivo analysis.  相似文献   

9.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

10.
A new pharmacophore-based modeling procedure, including homology modeling, pharmacophore study, flexible molecular docking, and long-time molecular dynamics (MD) simulations, was employed to construct the structure of the human 5-HT_(2C) receptor and determine the characteristics of binding modes of 5-HT_(2C) receptor agonists. An agonist-receptor complex has been constructed based on homology modeling and a pharmacophore hypothesis model based on some high active compounds. Then MD simulations of the ligand-receptor complex in an explicit membrane environment were carried out. The conformation of the 5- HT_(2C) receptor during MD simulation was explored, and the stable binding modes of the studied agonist were determined. Flexible molecular docking of several structurally diverse agonists of the human 5-HT_(2C) receptor was carried out, and the general binding modes of these agonists were investigated. According to the models presented in this work and the results of Flexi-Dock, the involvement of the amino acid residues Asp134, Ser138, Ash210, Asn331, Tyr358, Ile131, Ser132, Val135, Thr139, Ile189, Val202, Val208, Leu209, Phe214, Val215, Gly218, Ser219, Phe223, Trp324, Phe327, and Phe328 in agonist recognition was studied. The obtained binding modes of the human 5-HT_(2C) receptor agonists have good agreement with the site-directed mutagenesis data and other studies.  相似文献   

11.
Soluble epoxide hydrolase (sEH) is a promising new target for treating hypertension and inflammation. Considerable efforts have been devoted to develop novel inhibitors. In this study, the binding modes and interaction mechanisms of a series of adamantyl-based 1,3-disubstituted urea inhibitors were investigated by molecular docking, molecular dynamics simulations, binding free energy calculations, and binding energy decomposition analysis. Based on binding affinity, the most favorable binding mode was determined for each inhibitor. The calculation results indicate that the total binding free energy (ΔGTOT, the sum of enthalpy ΔGMM-GB/SA, and entropy ?TΔS) presents a good correlation with the experimental inhibitory activity (IC50, r2?=?.99). The van der Waals energy contributes most to the total binding free energy (ΔGTOT). A detailed discussion on the interactions between inhibitors and those residues located in the active pocket is made based on hydrogen bond and binding modes analysis. According to binding energy decomposition, the residues Asp333 and Trp334 contribute the most to binding free energy in all systems. Furthermore, Hip523 plays a major role in determining this class of inhibitor-binding orientations. Combined with the results of hydrogen bond analysis and binding free energy, we believe that the conserved hydrogen bonds play a role only in anchoring the inhibitors to the exact site for binding and the number of hydrogen bonds may not directly relate to the binding free energy. The results we obtained will provide valuable information for the design of high potency sEH inhibitors.  相似文献   

12.
Xu L  Li Y  Li L  Zhou S  Hou T 《Molecular bioSystems》2012,8(9):2260-2273
Macrophage migration inhibitory factor (MIF), an immunoregulatory protein, is a potential target for a number of inflammatory diseases. In the current work, the interactions between MIF and a series of phenolic hydrazones were studied by molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis to determine the structural requirement for achieving favorable biological activity of phenolic hydrazones. First, molecular docking was used to predict the binding modes of inhibitors in the binding site of MIF. The good correlation between the predicted docking scores and the experimental activities shows that the binding conformations of the inhibitors in the active site of MIF are well predicted. Moreover, our results suggest that the flexibility of MIF is essential in ligand binding process. Then, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The predicted binding free energies given by MM/GBSA are not well correlated with the experimental activities for the two subsets of the inhibitors; however, for each subset, a good correlation between the predicted binding free energies and the experimental activities is achieved. The MM/GBSA free energy decomposition analysis highlights the importance of hydrophobic residues for the MIF binding of the studied inhibitors. Based on the essential factors for MIF-inhibitor interactions derived from the theoretical predictions, some derivatives were designed and the higher inhibitory activities of several candidates were confirmed by molecular docking studies. The structural insights obtained from our study are useful for designing potent inhibitors of MIF.  相似文献   

13.
In the study, molecular dynamics simulations combined with MM-PBSA (Molecular Mechanics and Poisson-Boltzmann Surface Area) technique were applied to predict the binding mode of the polyphenol inhibitor in the binding pocket of the HCV NS3 serine protease for which the ligand-protein crystal structure is not available. The most favorable geometry of three candidates from molecular docking had a binding free energy about 3 and 6kcal/mol more favorable than the other two candidates, respectively, and was identified as the correct binding mode. In the mode, the correlation of the calculated and experimental binding affinities of all five polyphenol compounds is satisfactory indicated by r(2)=0.92. The most favorable binding mode suggests that two galloyl residues at 3 and 4 positions of the glucopyranose ring of the inhibitors interact with SER139, GLY137, ALA157, and ASP81 by hydrogen bond interaction and with ALA156 and HIE57 by hydrophobic interaction and are essential for the activities of the studied inhibitors.  相似文献   

14.
Abstract

Lysine-specific demethylase (LSD1) is an important enzyme for histone lysine methylation. Downregulated LSD1 expression has been linked to cancer proliferation, migration and invasion, indicating that it is an important target for anti-cancer medication. In the present study, the binding modes of a recent reported new series of LSD1 inhibitor were analyzed by using molecular docking and molecular dynamics simulations. A binding mode of these inhibitors was proposed based on the results. According to this binding mode, Thr628 can form two important hydrogen bonds with these inhibitors. Moreover, if the inhibitors can form an additional hydrogen bond with hydroxyl group of Ser289, the potency of the inhibitor can be greatly improved, such as the best inhibitor (compound 12d) in this series. Hydrophobic interactions between the inhibitors and LSD1 are also key contributor here, such as the interaction between the hydrophobic groups (benzene rings) of the inhibitors and the hydrophobic residues of LSD1 (including Val288, Val317, Val811, Ala814, Leu659, Trp751 and Tyr761). Based on the results and analysis, it may provide some useful information for future novel LSD1 inhibitor design.  相似文献   

15.
Thioesterase (TE) domain of fatty acid synthase (FAS) is an attractive therapeutic target for design and development of anticancer drugs. In this present work, we search for the potential FAS inhibitors of TE domain from the ZINC database based on similarity search using three natural compounds as templates, including flavonoids, terpenoids, and phenylpropanoids. Molecular docking was used to predict the interaction energy of each screened ligand compared to the reference compound, which is methyl γ-linolenylfluorophosphonate (MGLFP). Based on this computational technique, rosmarinic acid and its eight analogs were observed as a new series of potential FAS inhibitors, which showed a stronger binding affinity than MGLFP. Afterward, nine docked complexes were studied by molecular dynamics simulations for investigating protein–ligand interactions and binding free energies using MM-PB(GB)SA, MM-3DRISM-KH, and QM/MM-GBSA methods. The binding free energy calculation indicated that the ZINC85948835 (R34) displayed the strongest binding efficiency against the TE domain of FAS. There are eight residues (S2308, I2250, E2251, Y2347, Y2351, F2370, L2427, and E2431) mainly contributed for the R34 binding. Moreover, R34 could directly form hydrogen bonds with S2308, which is one of the catalytic triad of TE domain. Therefore, our finding suggested that R34 could be a potential candidate as a novel FAS-TE inhibitor for further drug design.  相似文献   

16.
Discovery of alpha-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate mediated diseases. We have been able to identify 13 novel alpha-glucosidase inhibitors by means of a computer-aided drug design protocol involving homology modeling of the target protein and the virtual screening with docking simulations under consideration of the effects of ligand solvation in the binding free energy function. Because the newly discovered inhibitors are structurally diverse and reveal a significant potency with IC(50) values lower than 50 microM, all of them can be considered for further development by structure-activity relationship studies or de novo design methods. Structural features relevant to the interactions of the newly identified inhibitors with the active site residues of alpha-glucosidase are discussed in detail.  相似文献   

17.
Application of molecular modeling approaches has potential to contribute to rational drug design. These approaches may be especially useful when attempting to elucidate the structural features associated with novel drug targets. In this study, molecular docking and molecular dynamics were applied to studies of inhibition of the human motor protein denoted HsEg5 and other homologues in the BimC subfamily. These proteins are essential for mitosis, so compounds that inhibit their activity may have potential as anticancer therapeutics. The discovery of a small-molecule cell-permeable inhibitor, monastrol, has stimulated research in this area. Interestingly, monastrol is reported to inhibit the human and Xenopus forms of Eg5, but not those from Drosophila and Aspergillus. In this study, homology modeling was used to generate models of the Xenopus, Drosophila, and Aspergillus homologues, using the crystal structure of the human protein in complex with monastrol as a template. A series of known inhibitors was docked into each of the homologues, and the differences in binding energies were consistent with reported experimental data. Molecular dynamics revealed significant changes in the structure of the Aspergillus homologue that may contribute to its relative insensitivity to monastrol and related compounds.  相似文献   

18.
Revealing selectivity mechanism of cyclin-dependent kinases (CDK) and their inhibitors is an important issue to develop potential anticancer drugs. The substituted 4-(Pyrazol-4-yl)-pyrimidines are potent inhibitors of CDK4 but not of the highly homologous CDK2. In order to reveal the inhibitory selectivity of these inhibitors to CDK4 over CDK2, we select one of substituted 4-(Pyrazol-4-yl)-pyrimidines as a representative (marked as A1 hereunder) and perform molecular docking, molecular dynamics simulations and binding free energy analysis for CDK4/A1 and CDK2/A1, respectively. The electrostatic and van der Waals (vdW) interactions of the A1 inhibitor with CDK4/CDK2 are discussed. The computed binding free energies based on the MM-PBSA method are consistent with experimental bioactivity ranking of A1 inhibitor to CDK4/CDK2. On the other hand, the conformational characteristics of CDK2 and CDK4 induced by A1 inhibitor are analysed and revealed. Results demonstrate that the vdW interactions considerably contribute to binding of CDK4/CDK2 with A1 inhibitor and are similar in size. The hydrogen bonding between A1 inhibitor and CDK4/CDK2 is considerably favourable to the binding, in which the hydrogen bond between the NH group of the pyrazole group of A1 and the residue Asp158 of CDK4 plays a crucial role in inhibitory selectivity of A1 inhibitor to CDK4 over CDK2. The electrostatic interaction energy differences between the corresponding residues of CDK4/A1 and CDK2/A1 confirm the above inference. The conformational changes of CDK2 and CDK4 induced by A1 inhibitor influence the selectivity of A1 inhibitor to CDK4/CDK2.  相似文献   

19.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

20.
Pseudolysin, the extracellullar elastase of Pseudomonas aeruginosa (EC: 3.4.24.26) plays an important role in the pathogenesis of P. aeruginosa infections. In the present study, molecular dynamics simulations and theoretical affinity predictions were used to gain molecular insight into pseudolysin inhibition. Four low molecular weight inhibitors were docked at their putative binding sites and molecular dynamics (MD) simulations were performed for 5.0 ns, and the free energy of binding was calculated by the linear interaction energy method. The number and the contact surface area of stabilizing hydrophobic, aromatic, and hydrogen bonding interactions appears to reflect the affinity differences between the inhibitors. The proteinaceous inhibitor, Streptomyces metalloproteinase inhibitor (SMPI) was docked in three different binding positions and MD simulations were performed for 3.0 ns. The MD trajectories were used for molecular mechanics-Poisson-Boltzmann surface area analysis of the three binding positions. Computational alanine scanning of the average pseudolysin-SMPI complexes after MD revealed residues at the pseudolysin-SMPI interface giving the main contribution to the free energy of binding. The calculations indicated that SMPI interacts with pseudolysin via the rigid active site loop, but that also contact sites outside this loop contribute significantly to the free energy of association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号