首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the alteration of nuclear matrix proteins (NMPs) during the differentiation of neuroblastoma SK‐N‐SH cells induced by retinoic acid (RA), differentiation markers were detected by immunocytochemistry and NMPs were selectively extracted and subjected to two‐dimensional gel electrophoresis analysis. Immunocytochemical observation demonstrated that the expression of neuronal markers was up‐regulated in SK‐N‐SH cells following RA treatment. Meanwhile, 52 NMPs (41 of which were identified) changed significantly during SK‐N‐SH differentiation; four of these NMPs were further confirmed by immunoblotting. This study suggests that the differentiation of neuroblastoma cells was accompanied by the altered expression of neuronal markers and NMPs. The presence of some differentially expressed NMPs was related to the proliferation and differentiation of neuroblastomas. Our results may help to reveal the relationship between NMPs and neuroblastoma carcinogenesis and reversion, as well as elucidate the regulatory principals driving neural cell proliferation and differentiation. J. Cell. Biochem. 106: 849–857, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The nuclear matrix-intermediate filament system of human neuroblastoma SK-N-SH cells before and after retinoic acid (RA) treatment was selectively extracted and the distribution of prohibitin (PHB) in the nuclear matrix, as well as its colocalization with related genes, was observed. Results of two-dimensional gel electrophoresis (2-DE), mass spectrometry (MS) identification, and protein immunoblotting all confirm that PHB was present in the components of SK-N-SH nuclear matrix proteins and was down-regulated after RA treatment. Immunofluorescence microscopy observations show that PHB was localized in the nuclear matrix and its distribution was altered due to RA treatment. Laser confocal microscopy results reveal that PHB colocalized with the expression products of c-myc, c-fos, p53, and Rb, but the colocalization region was altered after RA treatment. Our results prove that PHB is a nuclear matrix protein and is localized in nuclear matrix fibers. The distribution of PHB in SK-N-SH cells and its colocalization with related proto-oncogenes and tumor suppressor genes suggest that PHB plays pivotal roles in the differentiation of SK-N-SH cells and deserves further study.  相似文献   

3.
通过选择性抽提经环六亚甲基双乙酰胺(hexamethylene bisacetamide,HMBA)诱导处理前后的人肝癌SMMC-7721细胞核基质,并运用亚细胞蛋白质组学等分析技术,研究nucleophosmin (NPM)在核基质上的表达和定位变化,及其与相关基因产物的共定位关系,观察研究了nucleophosmin 在诱导分化前后人肝癌SMMC-7721细胞核基质中的存在、分布及其与相关基因产物的共定位关系.双向凝胶电泳和质谱鉴定结果显示,nucleophosmin 存在于 SMMC-7721 细胞核基质蛋白组分中,在 HMBA 处理后细胞核基质中表达下调.蛋白质印迹杂交实验结果确证了 nucleophosmin 在核基质中的存在及其在诱导处理后细胞核基质中表达下调的变化.免疫荧光显微镜观察显示,nucleophosmin 定位在 SMMC-7721细胞核基质上,经 HMBA处理后出现分布位置与表达水平的变化.激光扫描共聚焦显微镜观察结果显示,SMMC-7721细胞中,nucleophosmin与 c-fos、c-myc、rb、p53 等基因产物具有共定位关系,但在诱导处理后细胞内的共定位区域发生了改变.研究结果证实,nucleophosmin 是一种核基质蛋白,定位于核基质纤维上,nucleophosmin 在人肝癌 SMMC-7721 细胞诱导分化过程中的表达分布,及其与相关癌基因、抑癌基因产物的关系对 SMMC-7721 细胞分化具有重要影响.  相似文献   

4.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is involved in the synthesis of RNA. Its expression is up-regulated in many tumor cell lines. In this study, we investigated the distribution of hnRNP A2/B1 in the nuclear matrix, including its co-localization with expression products of related genes. Results from 2-DE PAGE and MS showed that hnRNP A2/B1 is involved with components of nuclear matrix proteins of SK-N-SH cells, and that its expression level is down-regulated after retinoic acid (RA) treatment. Protein immunoblotting results further confirm the existence of hnRNP A2/B1 in the nuclear matrix, as well as its down-regulation after RA treatment. Immunofluorescence microscopy observation showed that hnRNP A2/B1 localized in nuclear matrix of SK-N-SH cells and its distribution regions were altered after RA treatment. Laser scanning confocal microscopy observation showed that hnRNP A2/B1 co-localized with c-Myc, c-Fos, P53, and Rb in SK-N-SH cells. The co-localized region was altered as a result of RA treatment. Our data proved that hnRNP A2/B1 is a nuclear matrix protein and can be up-regulated in human neuroblastoma. The expression and distribution of hnRNP A2/B1 can affect the differentiation of SK-N-SH cells, as well as its co-localization with related oncogenes and tumor suppressor genes.  相似文献   

5.
Embryonic stem (ES) cells are thought to have unique chromatin structures responsible for their capacity for self-renewal and pluripotency. To examine this possibility, we sought nuclear proteins in mouse ES cells that specifically bind to histones using a pull-down assay with synthetic peptides of histone H3 and H4 tail domain as baits. Nuclear proteins preferentially bound to the latter. We identified 45 proteins associated with the histone H4 tail and grouped them into four categories: 10 chromatin remodeling proteins, five histone chaperones, two histone modification-related proteins, and 28 other proteins. mRNA expression levels of 20 proteins selected from these 45 proteins were compared between undifferentiated and retinoic acid (RA)-induced differentiated ES cells. All of the genes were similarly expressed in both states of ES cells, except nucleoplasmin 3 (NPM3) that was expressed at a higher level in the undifferentiated cells. NPM3 proteins were localized in the nucleoli and nuclei of the cells and expression was decreased during RA-induced differentiation. When transfected with NPM3 gene, ES cells significantly increased their proliferation compared with control cells. The present study strongly suggests that NPM3 is a chromatin remodeling protein responsible for the unique chromatin structure and replicative capacity of ES cells.  相似文献   

6.
7.
The orphan nuclear receptor estrogen‐related receptor gamma (ERRγ) is highly expressed in the nervous system during embryogenesis and in adult brains, but its physiological role in neuronal development remains unknown. In this study, we evaluated the relevance of ERRγ in regulating dopaminergic (DAergic) phenotype and the corresponding signaling pathway. We used retinoic acid (RA) to differentiate human neuroblastoma SH‐SY5Y cells. RA induced neurite outgrowth of SH‐SY5Y cells with an increase in DAergic neuron‐like properties, including up‐regulation of tyrosine hydroxylase, dopamine transporter, and vesicular monoamine transporter 2. ERRγ, but not ERRα, was up‐regulated by RA, and participated in RA effect on SH‐SY5Y cells. ERRγ over‐expression enhanced mature DAergic neuronal phenotype with neurite outgrowth as with RA treatment; and RA‐induced increase in DAergic phenotype was attenuated by silencing ERRγ expression. ERRγ appears to have a crucial role in morphological and functional regulation of cells that is selective for DAergic neurons. Polo‐like kinase 2 was up‐regulated in ERRγ‐over‐expressing SH‐SY5Y cells, which was involved in phosphorylation of glycogen synthase kinase 3β and resulting downstream activation of nuclear factor of activated T cells. The likely involvement of ERRγ in regulating the DAergic neuronal phenotype makes this orphan nuclear receptor a novel target for understanding DAergic neuronal differentiation.

  相似文献   


8.
为探索八氯腺苷的抗肿瘤作用机制,以神经母细胞瘤SH-SY5Y和SK-N-SH细胞为对象,采用四唑盐比色实验(MTT法)证明,八氯腺苷具有明显的抑制肿瘤细胞增殖的作用,这种抑制作用呈剂量-时间依赖性.流式细胞分析显示,10 μmol/L八氯腺苷作用48 h后可导致靶细胞生长停滞于G 2/M期;SH-SY5Y细胞发生明显细胞凋亡,但SK-N-SH细胞却未见凋亡.Hoechst 33342染色显示,SK-N-SH细胞发生了核分裂异常.蛋白质免疫印迹分析证明,10 μmol/L 八氯腺苷处理SH SY5Y 48~72 h后,G2检验点调节蛋白ATM、Chk1、Cdc25C和Cdc2磷酸化形式明显上调,同时伴有caspase-3的激活,提示SH-SY5Y细胞发生了G2检验点通路和细胞凋亡途径的激活.与SH-SY5Y细胞不同,在SK-N-SH细胞中,八氯腺苷处理24~96 h时,磷酸化ATM、磷酸化Chk1/Chk2、磷酸化Cdc25C以及磷酸化Cdc2的水平呈现逐渐降低的趋势.结果提示,SK-N-SH细胞在八氯腺苷处理后发生了G2检验点失败.蛋白质免疫印迹分析还显示,八氯腺苷可诱导p53在SH-SY5Y细胞的表达,但却不能影响SK—N-SH细胞的p53组成性表达水平.p21在SK-N-SH的组成性表达随八氯腺苷处理时间延长而逐渐减少,但在处理前后的SH-SY5Y细胞均未检测到p21蛋白的表达.上述实验结果提示,八氯腺苷抑制两种细胞增殖的机制不同:在SH-SY5Y细胞,八氯腺苷可激活ATM-Chk-Cdc25C-Cdc2/cyclin途径和凋亡通路,使细胞发生G2/M期阻滞和细胞凋亡;在SK-N-SH细胞,八氯腺苷诱导G2检验点失败,导致细胞阻滞在有丝分裂期,并发生有丝分裂异常.2种不同的细胞命运可能还与p53和p21表达不同有关.  相似文献   

9.
Notechis scutatus scutatus notexin induced apoptotic death of SK‐N‐SH cells accompanied with downregulation of Bcl‐xL, upregulation of Bak, mitochondrial depolarization, and ROS generation. Upon exposure to notexin, Ca2+‐mediated JNK and p38 MAPK activation were observed in SK‐N‐SH cells. Production of ROS was a downstream event followed by Ca2+‐mediated mitochondrial alteration. Notexin‐induced cell death, mitochondrial depolarization, and ROS generation were suppressed by SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor). Moreover, phospho‐p38 MAPK and phospho‐JNK were proved to be involved in Bcl‐xL degradation, and overexpression of Bcl‐xL attenuated the cytotoxic effect of notexin. Bak upregulation was elicited by p38 MAPK‐mediated ATF‐2 activation and JNK‐mediated c‐Jun activation. Suppression of Bak upregulation by ATF‐2 siRNA or c‐Jun siRNA attenuated notexin‐evoked mitochondrial depolarization and rescued viability of notexin‐treated cells. Taken together, our data indicate that notexin‐induced apoptotic death of SK‐N‐SH cells is mediated through mitochondrial alteration triggering by Ca2+‐evoked p38 MAPK/ATF‐2 and JNK/c‐Jun signaling pathways. J. Cell. Physiol. 222:177–186, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
在鉴定视黄酸(retinoic acid, RA)诱导人神经母细胞瘤SK-N-SH细胞分化的基础上,应用免疫细胞化学、选择性抽提和蛋白质组学分析技术,对SK-N-SH细胞诱导分化过程中核基质蛋白组成变化进行了系统研究.实验结果显示,经1 μmol/L RA处理后SK-N-SH细胞呈极性状,伸出较长的轴突样突起,胞体逐渐变小变圆.免疫细胞化学结果显示,处理后神经细胞特异表达的蛋白synaptophysin、NSE、MAP2的表达量都较对照组有明显增强.双向凝胶电泳分析显示,在RA诱导SK-N-SH细胞分化前后存在52个差异表达的核基质蛋白,经质谱分析,鉴定了其中的41个蛋白.蛋白印迹杂交进一步确证了诱导分化差异表达核基质蛋白中nucleophosmin和prohibitin等的表达变化.研究结果表明,1 μmol/L RA对SK-N-SH细胞具有显著的诱导分化作用,在SK-N-SH细胞分化过程中,其核基质蛋白组成发生了明显变化.这些变化对于揭示人神经母细胞瘤细胞癌变与逆转机制和肿瘤细胞增殖与分化调控机理均有十分重要的意义,从而为研究神经系统正常发育过程及神经系统疾病的发病机理提供科学依据.  相似文献   

12.
选择性抽提经人参皂苷Rg1组合(RCT)诱导处理前后的人成骨肉瘤MG-63细胞核基质,对prohibitin在核基质中的存在、分布及其与相关基因产物在RCT处理前后MG-63细胞中的共定位关系进行观察研究.蛋白质组学分析结果显示,prohibitin存在于人成骨肉瘤MG-63细胞核基质蛋白组分中,并在RCT处理后细胞核基质中表达下调;蛋白质印迹杂交确证了prohibitin在MG-63细胞核基质中的存在及其在RCT处理后下调变化;免疫荧光显微镜观察进一步证实prohibitin定位在核基质上,经RCT处理后出现分布位置与表达水平变化;激光共聚焦显微镜观察可见prohibitin与c-Fos、c-Myc、p53和Rb基因产物均存在共定位关系,并在RCT处理后共定位分布区域出现变化.本研究证实了prohibitin是一种新发现的核基质蛋白,其在核基质上的定位与表达在RCT诱导分化前后发生显著变化,并与相关癌基因、抑癌基因产物存在共定位关系.实验表明RCT处理引起的prohibitin的变化与人成骨肉瘤MG-63细胞的诱导分化与调控具有密切关系,为深入揭示RCT等中药有效成分诱导肿瘤细胞分化的机理提供了重要科学依据和深入探索的新方向.  相似文献   

13.
Several clinical and experimental studies have demonstrated that regular use of aspirin (acetylsalicylic acid, ASA) correlates with a reduced risk of cancer and that the drug exerts direct anti‐tumour effects. We have previously reported that ASA inhibits proliferation of human glioblastoma multiforme‐derived cancer stem cells. In the present study, we analysed the effects of ASA on nervous system‐derived cancer cells, using the SK‐N‐SH (N) human neuroblastoma cell line as an experimental model. ASA treatment of SK‐N‐SH (N) dramatically reduced cell proliferation and motility, and induced neuronal‐like differentiation, indicated by the appearance of the neuronal differentiation marker tyrosine hydroxylase (TH) after 5 days. ASA did not affect cell viability, but caused a time‐dependent accumulation of cells in the G0/G1 phase of the cell cycle, with a concomitant decrease in the percentage of cells in the G2 phase. These effects appear to be mediated by a COX‐independent mechanism involving an increase in p21Waf1 and underphosphorylated retinoblastoma (hypo‐pRb1) protein levels. These findings may support a potential role of ASA as adjunctive therapeutic agent in the clinical management of neuroblastoma.  相似文献   

14.
15.
The adapter protein SH2-B has been shown to bind to activated nerve growth factor (NGF) receptor TrkA and has been implicated in NGF-induced neuronal differentiation and the survival of sympathetic neurons. However, the mechanism by which SH2-B enhances and maintains neurite outgrowth is unclear. We examined the ability of truncation mutants to regulate neuronal differentiation and observed that certain truncation mutants localized in the nucleus rather than in the cytoplasm or at the plasma membrane as reported for wild-type SH2-B beta. Addition of the nuclear export inhibitor leptomycin B caused both overexpressed wild-type and endogenous SH2-B beta to accumulate in the nucleus of both PC12 cells and COS-7 cells as did deletion of a putative nuclear export sequence (amino acids 224 to 233) or mutation of two critical lysines in that sequence. Deleting or mutating the nuclear export signal caused SH2-B beta to lose its ability to enhance NGF-induced differentiation of PC12 cells. Neither the NGF-induced phosphorylation of ERKs 1 and 2 nor their subcellular distribution was altered in PC12 cells stably expressing the nuclear export-defective SH2-B beta(L231A, L233A). These data provide strong evidence that SH2-B beta shuttles constitutively between the nucleus and cytoplasm. However, SH2-B beta needs continuous access to the cytoplasm and/or plasma membrane to participate in NGF-induced neurite outgrowth. These data also suggest that the stimulatory effect of SH2-B beta on NGF-induced neurite outgrowth of PC12 cells is either downstream of ERKs or via some other pathway yet to be identified.  相似文献   

16.
Emerging evidence has shown that GSK3β plays a pivotal role in regulating the specification of axons and dendrites. Our previous study has shown a novel GSK3β interaction protein (GSKIP) able to negatively regulate GSK3β in Wnt signaling pathway. To further characterize how GSKIP functions in neurons, human neuroblastoma SH‐SY5Y cells treated with retinoic acid (RA) to differentiate to neuron‐like cells was used as a model. Overexpression of GSKIP prevents neurite outgrowth in SH‐SY5Y cells. GSKIP may affect GSK3β activity on neurite outgrowth by inhibiting the specific phosphorylation of tau (ser396). GSKIP also increases β‐catenin in the nucleus and raises the level of cyclin D1 to promote cell‐cycle progression in SH‐SY5Y cells. Additionally, overexpression of GSKIP downregulates N‐cadherin expression, resulting in decreased recruitment of β‐catenin. Moreover, depletion of β‐catenin by small interfering RNA, neurite outgrowth is blocked in SH‐SY5Y cells. Altogether, we propose a model to show that GSKIP regulates the functional interplay of the GSK3β/β‐catenin, β‐catenin/cyclin D1, and β‐catenin/N‐cadherin pool during RA signaling in SH‐SY5Y cells. J. Cell. Biochem. 108: 1325–1336, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
神经钙粘着蛋白在P19神经元分化中的作用   总被引:2,自引:0,他引:2  
利用RT-PCR技术,我们检测P19细胞体外神经元分化过程中神经钙粘着蛋白(N-cadherin)的表达模式。结果显示,该基因在上述过程中存在上调和下调过程,与体内中枢神经系统发育过程的表达模式十分相近。在此基础上,我们将神经钙粘着蛋白基因cDNA全长转入P19细胞,通过药物筛选,得到稳定表达钙粘着蛋白的细胞株。  相似文献   

19.
20.
The protein composition of the nuclear matrix of murine P19 embryonal carcinoma (EC) cells was compared with that of clonal derivatives of P19 EC differentiated in vitro, and with that of P19 EC cells induced to differentiate with retinoic acid (RA). Several major differences in nuclear matrix protein composition were found between the cell lines tested. Some polypeptides were found to occur only in EC cells, whereas others proved to be restricted to one or more of the differentiated derivatives. During RA treatment of EC cells a transient expression of some matrix proteins was observed. Several new proteins appeared, and others disappeared. Our data indicate that the protein composition of the nuclear matrix is a sensitive gauge for the differentiation state of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号