首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
一种马铃薯高效无标记转基因技术的建立   总被引:2,自引:0,他引:2  
用农杆菌介导法转化马铃薯栽培品种紫花白的叶盘,通过1/4 MS培养基预培养、热激处理、低pH、高糖培养基共培养,之后利用PCR直接检测转化体,结果表明遗传转化效率可达5.1%,建立了马铃薯无标记转基因技术.该技术受基因型的限制小,用于其它3个不同的栽培品种东北白、晋薯7号和早大白,遗传转化效率亦达到了4.1%~8.3%.利用这项无标记转基因技术,在载体构建时就剔除了标记基因,遗传转化后直接分化培养,不必对转化细胞进行抗性筛选,缩短了遗传转化周期,省去了费时费力的标记基因剔除步骤,亦为重复转化聚合多个优良基因提供了便利.  相似文献   

2.
Removal of a selectable marker gene from genetically modified (GM) crops alleviates the risk of its release into the environment and hastens the public acceptance of GM crops. Here we report the production of marker-free transgenic rice by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination in a single transformation. Among 86 independent transgenic lines, ten were found to be marker-free in the T0 generation and an additional 17 lines segregated marker-free transgenic plants in the T1 generation. Molecular and genetic analyses indicated that the DNA recombination and excision in transgenic rice were precise and the marker-free recombinant T-DNA was stable and heritable.The first two authors contributed equally to the work  相似文献   

3.
The development of rapid and efficient strategies to generate selectable marker-free transgenic plants could help increase the consumer acceptance of genetically modified (GM) plants. To produce marker-free transgenic plants without conditional treatment or the genetic crossing of offspring, we have developed a rapid and convenient DNA excision method mediated by the Cre/loxP recombination system under the control of a −46 minimal CaMV 35S promoter. The results of a transient expression assay showed that −46 minimal promoter::Cre recombinase (−46::Cre) can cause the loxP-specific excision of a selectable marker, thereby connecting the 35S promoter and β-glucuronidase (GUS) reporter gene. Analysis of stable transgenic Arabidopsis plants indicated a positive correlation between loxP-specific DNA excision and GUS expression. PCR and DNA gel-blot analysis further revealed that nine of the 10 tested T1 transgenic lines carried both excised and nonexcised constructs in their genomes. In the subsequent T2 generation plants, over 30% of the individuals for each line were marker-free plants harboring the excised construct only. These results demonstrate that the −46::Cre fusion construct can be efficiently and easily utilized for producing marker-free transgenic plants.  相似文献   

4.
由于关系到转基因植物的产业化前景,安全型转基因植物培育越来越受到公众的关注。在植物遗传转化体系中,绝大多数选择标记基因来源于细菌,对人类健康和环境安全存在潜在风险,因此无选择标记转基因植物培育受到科研工作者的高度重视。本文综述了安全型转基因植物的培育途径,包括共转化系统、位点特异性重组系统、转座子系统、同源重组系统、不依赖于组织培养的简易转化技术及再生相关基因利用等技术,探讨了各种途径的优缺点,以期推动安全型转基因植物培育和转基因植物产业化进程。  相似文献   

5.
安全型转基因植物培育技术研究进展   总被引:1,自引:0,他引:1  
由于关系到转基因植物的产业化前景,安全型转基因植物培育越来越受到公众的关注。在植物遗传转化体系中,绝大多数选择标记基因来源于细菌,对人类健康和环境安全存在潜在风险,因此无选择标记转基因植物培育受到科研工作者的高度重视。本文综述了安全型转基因植物的培育途径,包括共转化系统、位点特异性重组系统、转座子系统、同源重组系统、不依赖于组织培养的简易转化技术及再生相关基因利用等技术,探讨了各种途径的优缺点,以期推动安全型转基因植物培育和转基因植物产业化进程。  相似文献   

6.
Luo K  Sun M  Deng W  Xu S 《Biotechnology letters》2008,30(7):1295-1302
To excise a selectable marker gene from transgenic plants, a new binary expression vector based on the 'genetically modified (GM)-gene-deletor' system was constructed. In this vector, the gene coding for FLP site-specific recombinase under the control of a heat shock-inducible promoter HSP18.2 from Arabidopsis thaliana and isopentenyltransferase gene (ipt), as a selectable marker gene under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter, were flanked by two loxP/FRT fusion sequences as recombination sites in direct orientation. Histochemical staining for GUS activity showed that, upon induction by heat shock, all exogenous DNA, including the selectable marker gene ipt, beta-glucuronidase (gusA) gene and the FLP recombinase gene, between two loxP/FRT sites was eliminated efficiently from primary transgenic tobacco plants. Molecular analysis further confirmed that excision of the marker gene (ipt) was heritable and stable. Our approach provides a reliable strategy for auto-excising a selectable marker gene from calli, shoots or other tissues of transgenic plants after transformation and producing marker-free transgenic plants.  相似文献   

7.
The review considers the basic strategies used to produce biologically safe marker-free transgenic plants and analyzes their advantages and disadvantages. The systems of positive and negative selection as safer approaches for transformant identification are briefly described. The application of co-transformation, transposition, and site-specific recombination for production of marker-free plants is described. Special attention is paid to novel approaches to create marker-free plants initially containing no selective genes in their genomes.  相似文献   

8.
The aim of this research was to generate selectable marker-free transgenic tomato plants with improved tolerance to abiotic stress. An estradiol-induced site-specific DNA excision of a selectable marker gene using the Cre/loxP DNA recombination system was employed to develop transgenic tomato constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase gene from Arabidopsis thaliana. Transgenic tomato plants containing a selectable marker were also produced as controls. The expression of AtIpk2β conferred improved resistance to drought, cold and oxidative stress in both sets of transgenic tomato plants. These results demonstrate the feasibility of using this Cre/loxP-based marker elimination strategy to generate marker-free transgenic crops with improved stress tolerance.  相似文献   

9.
Targeted integration of foreign genes into plant genomes is a much sought-after technology for engineering precise integration structures. Homologous recombination-mediated targeted integration into native genomic sites remained somewhat elusive until made possible by zinc finger nuclease-mediated double-stranded breaks. In the meantime, an alternative approach based on the use of site-specific recombination systems has been developed which enables integration into previously engineered genomic sites (site-specific integration). Follow-up studies have validated the efficacy of the site-specific integration technology in generating transgenic events with a predictable range and stability of expression through successive generations, which are critical features of reliable and practically useful transgenic lines. Any DNA delivery methods can be used for site-specific integration; however, best efficiency is mostly obtained with direct DNA delivery methods such as particle bombardment. Although site-specific integration approach provides unique advantages for producing transgenic plants, it is still not a commonly used method. The present article discusses barriers and solutions for making it readily available to both academic research and applicative use.  相似文献   

10.
Many systems have been developed for the removal of a selection marker in order to generate marker-free transgenic plants. These systems consist of (1) a site-specific recombination system (Cre/lox) or a phage-attachment region (attP) to remove the selectable marker gene and (2) a transposable element system (Ac) or a co-transformation system to segregate the gene of interest from the selectable marker gene. Overall, the process is more time-consuming than conventional transformation methods because two rounds of transformation - two steps of regeneration or sexual crossings - are required to obtain the desired transgenic plants. Recently, removal systems combined with a positive marker, denoted as MAT vectors, have been developed to save time and effort by generating marker-free transgenic plants through a single-step transformation. We summarize here the transformation procedures using these systems and discuss their feasibility for practical use.  相似文献   

11.
Genetic transformation of an elite white poplar genotype (Populus alba L., cv. ‘Villafranca’) was performed with MAT vectors carrying the ipt and rol genes from Agrobacterium spp. as morphological markers. The effects associated with the use of different gene promoters and distinct in vitro regeneration protocols were evaluated. Poplar plantlets showing abnormal ipt and rol phenotypes were produced only in the presence of exogenous growth regulators. The occurrence of abnormal ipt and rol phenotypes allowed the visual selection of transformants. The ipt-type MAT vector pEXM2 was used to monitor the activity of the yeast site-specific recombination R/RS system in the transformed white poplar cells. Results from these experiments demonstrated that recombinase-mediated excision events occurred during the early stages of in vitro culture, thus causing the direct production of ipt marker-free transgenic plants with normal phenotype at an estimated frequency of 36.4%. Beside this unexpected finding, transgenic ipt-shooty plants were obtained at a frequency of 63.6% and normal shoots were subsequently recovered after a prolonged period of in vitro culture. Although the transformation efficiency observed in this study, using both ipt and nptII genes as selection markers, was similar to that previously reported with standard vectors carrying only the nptII gene, the easy identification of ipt transformants, the early recombinase-mediated excision events and finally the relatively short time period required to produce ipt marker-free transgenic plants support for the choice of MAT vectors as a reliable strategy for the future production of marker-free GM poplars.  相似文献   

12.
Transgene integration mediated by heterologous site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. This approach of plant transformation generates a precise site-specific integration (SSI) structure consisting of a single copy of the transgene construct. As a result, stable transgene expression correlated with promoter strength and gene copy number is observed among independent transgenic lines and faithfully transmitted through subsequent generations. Site-specific integration approaches use selectable marker genes, removal of which is necessary for the implementation of this approach as a biotechnology application. As SSR systems are also excellent tools for excising marker genes from transgene locus, a molecular strategy involving gene integration followed by marker excision, each mediated by a distinct recombination system, was earlier proposed. Experimental validation of this approach is the focus of this work. Using FLPe-FRT system for site-specific gene integration and heat-inducible Cre-lox for marker gene excision, marker-free SSI lines were developed in the first generation itself. More importantly, progeny derived from these lines inherited the marker-free locus, indicating efficient germinal transmission. Finally, as the transgene expression from SSI locus was not altered upon marker excision, this method is suitable for streamlining the production of marker-free SSI lines.  相似文献   

13.
Public concerns about the issue of the environmental safety of genetically modified plants have led to a demand for technologies allowing the production of transgenic plants without selectable (antibiotic resistance) markers. We describe the development of an effective transformation system for generating such marker-free transgenic plants, without the need for repeated transformation or sexual crossing. This system combines an inducible site-specific recombinase for the precise elimination of undesired, introduced DNA sequences with a bifunctional selectable marker gene used for the initial positive selection of transgenic tissue and subsequent negative selection for fully marker-free plants. The described system can be generally applied to existing transformation protocols, and was tested in strawberry using a model vector in which site-specific recombination leads to a functional combination of a cauliflower mosaic virus 35S promoter and a GUS encoding sequence, thereby enabling the histochemical monitoring of recombination events. Fully marker-free transgenic strawberry plants were obtained following two different selection/regeneration strategies.  相似文献   

14.
Selectable marker genes that usually encode antibiotic or herbicide resistances are widely used for the selection of transgenic plants, but they become unnecessary and undesirable after transformation selection. An important strategy to improve the transgenic plants' biosafety is to eliminate the marker genes after successful selection. In the FLP/frt site-specific system of 2-μm plasmid from Saccharomyces cerevisiae, the FLP enzyme efficiently catalyzes recombination between two directly repeated FLP recombination target (frt) sites, eliminating the sequence between them. By controlled expression of the FLP recombinase and specific allocation of the frt sites within transgenic constructs, the system can be applied to eliminate the marker genes after selection. Through a series of procedures, the plant FLP/frt site-specific recombination system was constructed, which included the frt-containing vector pCAMBIA1300-betA-frt-als-frt and the FLP expression vector pCAMBIA1300-hsp-FLP-hpt. The FLP recombinase gene was introduced into transgenic (betA-frt-als-frt) tobacco plants by re-transformation. In re-transgenic plants, after heat-shock treatment, the marker gene als flanked by two identical orientation frt sites could be excised by the inducible expression of FLP recombinase under the control of hsp promoter. Excision of the als gene was found in 41 % re-transgenic tobacco plants, which indicated that this system could make a great contribution obtaining the marker-free transgenic plants.  相似文献   

15.
Trait genes are usually introduced into the plant genome together with a marker gene. The last one becomes unnecessary after transgene selection and characterization. One of the strategies to produce transgenic plants free from the selectable marker is based on site-specific recombination. The present study employed the transient Cre-lox system to remove the nptII marker gene from potato. Transient marker gene excision involves introduction of Cre protein in lox-target plants by PVX virus vector followed by plant regeneration. Using optimized experimental conditions, such as particle bombardment infection method and application of P19 silencing suppressor protein, 20-27% of regenerated plants were identified by PCR analysis as marker-free. Based on our comparison of the recombination frequencies observed in this study to the efficiency of other methods to avoid or eliminate marker genes in potato, we suggest that PVX-Cre mediated site-specific excisional recombination is a useful tool to generate potato plants without superfluous transgenic sequences.  相似文献   

16.
The development of marker-free transgenic plants has responded to public concerns over the safety of biotechnology crops. It seems that continued work in this area will soon remove the question of unwanted marker genes from the debate concerning the public acceptability of transgenic crop plants. Selectable marker genes are co-introduced with genes of interest to identify those cells that have integrated the DNA into their genome. Despite the large number of different selection systems, marker genes that confer resistance to the antibiotics, hygromycin (hpt) and kanamycin (nptII) or herbicide phosphinothricin (bar), have been used in most transgenic research and crop development techniques. The techniques that remove marker gene are under development and will eventually facilitate more precise and subtle engineering of the plant genome, with widespread applications in both fundamental research and biotechnology. In addition to allaying public concerns, the absence of resistance genes in transgenic plants could reduce the costs of developing biotechnology crops and lessen the need for time-consuming safety evaluations, thereby speeding up the commercial production of biotechnology crops. Many research results and various techniques have been developed to produce marker-free transgenic plants. This review describes the strategies for eliminating selectable marker genes to generate marker-free transgenic plants, focusing on the three significant marker-free technologies, co-transformation, site-specific recombinase-mediated excision, and non-selected transformation.  相似文献   

17.
The Cre–loxP site-specific recombination system was deployed for removal of marker genes from Brassica juncea (Indian mustard). Excision frequencies, monitored by removal of nptII or gfp genes in F1 plants of crosses between LOX and CRE lines, were high in quiescent, differentiated somatic tissues but extremely poor in the meristematic regions (and consequently the germinal cells) thus preventing identification and selection of marker-free transgenic events which are devoid of both the marker gene as well as the cre gene, in F2 progeny. We show that a passage through in vitro culture of F1 leaf explants allows efficient development of marker-free transgenics in the F2 generation addressing current limitations associated with efficient use of the Cre/loxP technology for marker gene removal. N. Arumugam and Vibha Gupta have contributed equally to this work.  相似文献   

18.
A transgene stacking system is a prerequisite for the introduction of multiple genes and for the modification of complex metabolic pathways in plants. We demonstrate here that the MAT-vector system previously used for generating marker-free transgenic plants is also an efficient and reliable transformation system for the repeated introduction of multiple transgenes independent of sexual crossing. We previously reported that the GST-MAT vector system, in which excision of the yeast site-specific recombination R/RS system is regulated by the maize GST-II-27 promoter, could generate marker-free transgenic plants containing a single transgene with high frequency. Here we show that the GST-MAT vector can be used successfully to introduce a second transgene (GFP) into a marker-free transgenic tobacco line containing single copies of the first transgenes (nptII and uidA genes). The transgene-stacked marker-free transgenic tobacco plants were generated from ca. 20% of excision-positive ipt-shooty explants within 5 months of Agrobacterium infection. The presence of uidA, nptII, GFP genes and the absence of the ipt gene were verified by PCR analyses. Furthermore, Southern blot analysis showed that no chromosomal rearrangements were introduced between the first and second transformations.  相似文献   

19.
We describe here a practical system for generating selectable marker-free transgenic woody plants independent of sexual crossing. We previously reported that the GST-MAT vector system could produce marker-free transgenic tobacco plants containing a single-copy transgene at high frequency. The GST-MAT vector system consists of a DNA excision cassette of the R/RS site-specific recombination system from Zygosaccharomyces rouxii into which the isopentenyltransferase gene from Agrobacterium tumefaciens has been inserted. In this study, we applied this new GST-MAT vector to hybrid aspen (Populus Sieboldii X Populus grandidentata), a model of vegetatively propagated plant species, to produce selectable marker-free transgenic woody plants. In the new GST-MAT vector, the chimeric ipt gene fused with a light-inducible rbcS promoter efficiently produced transgenic ipt-shooty with GUS activity from 38.0% of infected stems. Upon excision of the R and ipt genes between RS sites, regulated by the inducible promoter of the maize glutathione-S-transferase (GST-II-27) gene, 3 (21.4%) transgenic hybrid aspen plants with marker-free and normal phenotype were generated from 14 ipt-shooty lines within 2 months after cutting induction. These results suggest that the MAT-vector system might be useful for removing a selectable marker gene independent of sexual crossing in vegetatively propagated species.  相似文献   

20.
The neomycin phosphotransferase (nptII) selection system has proved successful in citrus transformation; however, it may be recommendable to replace it given the pressure exerted against antibiotic-resistance selectable marker genes in transgenic plants. The present work investigates three different selection alternatives, comparing them to nptII selection in two citrus genotypes, Carrizo citrange and Pineapple sweet orange. The first method used the beta-glucuronidase (uidA) reporter marker gene for selection; the second attempted to generate marker-free plants by transforming explants with a multi-auto-transformation (MAT) vector, combining an inducible R/RS-specific recombination system with transgenic-shoot selection through expression of isopentenyl transferase (ipt) and indoleacetamide hydrolase/tryptophan monooxygenase (iaaM/H) marker genes; while the third exploited the phosphomannose isomerase (PMI)/mannose conditional positive selection system. Firstly, GUS screening of all regenerated shoots in kanamycin-free medium gave 4.3% transformation efficiency for both genotypes. Secondly, workable transformation efficiencies were also achieved with the MAT system, 7.2% for citrange and 6.7% for sweet orange. This system affords an additional advantage as it enables selectable marker genes to be used during the in vitro culture phase and later removed from the transgenic plants by inducible recombination and site-specific excision. Thirdly, the highest transformation rates were obtained with the PMI/mannose system, 30% for citrange and 13% for sweet orange, which indicates that this marker is also an excellent candidate for citrus transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号