首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural studies of the calmodulin-dependent protein kinase I have shown how the calmodulin-binding domain and autoinhibitory domain interact with the active sites of the enzyme. In this work, we have studied the interaction in solution of two synthetic short and long (22- and 37-residue) peptides representing the binding and autoinhibitory domains of CaMKI with Ca2+-CaM using CD, NMR, and EPR spectroscopy. Both peptides adopt alpha-helical structure when bound to Ca2+-CaM, as detected by CD spectroscopy. Cadmium-113 NMR showed that both peptides induced cooperativity in metal ion binding between the two lobes of the protein. To directly observe the effect of the peptides upon CaM in solution, biosynthetically isotope labeled [methyl-13C-Met]CaM was prepared and studied by 1H, 13C NMR. The relaxation effects of two nitroxide spin-labeled derivatives of the short peptide showed the N-terminal portion of the CaM-binding domain interacting with the C-lobe of CaM, while the C-lobe of the peptide binds to the N-lobe of CaM. Our results are consistent with Trp303 and Met316 acting as the anchoring residues for the C- and N-lobes of CaM, respectively. The NMR spectra of the long peptide showed further differences, suggesting that additional interactions may exist between the autoinhibitory domain and CaM.  相似文献   

2.
Peptide binding by a fragment of calmodulin composed of EF-hands 2 and 3   总被引:1,自引:0,他引:1  
Calmodulin (CaM) is composed of two EF-hand domains tethered by a flexible linker. Upon Ca2+-binding, a fragment of CaM encompassing EF-hands 2 and 3 (CaM2/3; residues 46-113) folds into a structure remarkably similar to the N- and C-domains of CaM. In this study, we demonstrate that Ca2+-ligated CaM2/3 can also bind to a peptide representing the CaM-recognition sequence of skeletal muscle myosin light chain kinase (M13) with an equimolar stoichiometry and a dissociation constant of 0.40 +/- 0.05 microM. On the basis of an analytical ultracentrifugation measurement, the resulting complex exists as an equilibrium mixture of 2:2 heterotetrameric and 1:1 heterodimeric species. Chemical shift perturbation mapping indicates that, similar to CaM, the peptide associates with a hydrophobic groove crossing both EF-hands in CaM2/3. However, upon binding the M13 peptide, many residues in CaM2/3 yielded two equal intensity NMR signals with the same 15N relaxation properties. Thus, the 2:2 CaM2/3-M13 tetramer, which predominates under the conditions used for these studies, is asymmetric with each component adopting spectroscopically distinguishable conformations within the complex. CaM2/3 also weakly stimulates the phosphatase activity of calcineurin and inhibits stimulation by native CaM. These studies highlight the remarkable plasticity of EF-hand association and expand the diverse repertoire of mechanisms possible for CaM-target protein interactions.  相似文献   

3.
Cadmium-113 and calcium-43 NMR spectra of Cd2+ and Ca2+ bound to the porcine intestinal calcium binding protein (ICaBP; Mr 9000) contain two resonances. The first resonance is characterized by NMR parameters resembling those found for these cations bound to proteins containing the typical helix-loop-helix calcium binding domains of parvalbumin, calmodulin, and troponin C, which are defined as EF-hands by Kretsinger [Kretsinger, R. H. (1976) Annu. Rev. Biochem. 45, 239]. The second resonance in both spectra has a unique chemical shift and is consequently assigned to the metal ion bound in the N-terminal site of ICaBP. This site is characterized by an insertion of a proline in the loop of the helix-loop-helix domain and will be called the pseudo-EF-hand site. The binding of Cd2+ to the apo form of ICaBP is sequential. The EF-hand site is filled first. Both binding sites have similar, but not identical, affinities for Ca2+: at a Ca2+ to protein ratio of 1:1, 65% of the ion is bound in the EF-hand site and 35% in the pseudo-EF-hand site. The two sites do not appear to act independently; thus, replacement of Ca2+ or Cd2+ by La3+ in the EF-hand site causes changes in the environment of the ions in the pseudo-EF-hand site. In addition, the chemical shift of Cd2+ bound to the EF-hand site is dependent on the presence or absence of Ca2+ or Cd2+ in the pseudo-EF-hand site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1–14 and 1–10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM’s central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly α-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.  相似文献   

5.
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.  相似文献   

6.
Ca4.calmodulin (Ca4.CaM) inhibits the glycolytic enzyme phosphofructokinase, by preventing formation of its active tetramer. Fluorescence titrations show that the affinity of complex formation of Ca4.CaM with the key 21-residue target peptide increases 1000-fold from pH 9.0 to 4.8, suggesting the involvement of histidine and carboxylic acid residues. 1H NMR pH titration indicates a marked increase in pKa of the peptide histidine on complex formation and HSQC spectra show related pH-dependent changes in the conformation of the complex. This unusually strong sensitivity of a CaM-target complex to pH suggests a potential functional role for Ca4.CaM in regulation of the glycolytic pathway.  相似文献   

7.
The binding of calmodulin (CaM) to four synthetic peptide analogues of the skeletal muscle myosin light chain kinase (sk-MLCK) target sequence has been studied using 1H-NMR. The 18-residue peptide WFF is anchored to CaM via the interaction of the Trp 4 side chain with the C-domain and the Phe 17 side chain with the N-domain of the protein. A peptide corresponding to the first 10 residues (WF10) does not provide the second anchoring residue and is not long enough to span both domains of CaM. 1H-NMR spectroscopy indicates that the WF10 peptide interacts specifically with the C-domain of CaM, and the chemical shifts of the bound Trp side chain are very similar in the CaM:WF10 and CaM:WFF complexes. Binding of the C-domain of CaM to the strongly basic region around Trp 4 of this MLCK sequence may be an important step in target recognition. Comparison of 1H-NMR spectra of CaM bound to WFF, a Trp 4-->Phe analogue (FFF), or a Trp 4-->Phe/Phe 17-->Trp analogue (FFW) suggests that all three peptides bind to CaM in the same orientation, i.e., with the peptide side chain in position 4 interacting with the C-domain and the side chain in position 17 interacting with the N-domain. This indicates that a Trp residue in position 4 is not an absolute requirement for binding this target sequence and that interchanging the Trp 4 and Phe 17 residues does not reverse the orientation of the bound peptide, in confirmation of the deduction from previous indirect studies using circular dichroism (Findlay WA, Martin SR, Beckingham K, Bayley PM, 1995, Biochemistry 34:2087-2094). Molecular modeling/energy minimization studies indicate that only minor local changes in the protein structure are required to accommodate binding of the bulkier Trp 17 side chain of the FFW peptide to the N-domain of CaM.  相似文献   

8.
The structure of calcium-bound calmodulin (Ca2+/CaM) complexed with a 26-residue peptide, corresponding to the CaM-binding domain of rat Ca2+/CaM-dependent protein kinase kinase (CaMKK), has been determined by NMR spectroscopy. In this complex, the CaMKK peptide forms a fold comprising an alpha-helix and a hairpin-like loop whose C-terminus folds back on itself. The binding orientation of this CaMKK peptide by the two CaM domains is opposite to that observed in all other CaM-target complexes determined so far. The N- and C-terminal hydrophobic pockets of Ca2+/CaM anchor Trp 444 and Phe 459 of the CaMKK peptide, respectively. This 14-residue separation between two key hydrophobic groups is also unique among previously determined CaM complexes. The present structure represents a new and distinct class of Ca2+/CaM target recognition that may be shared by other Ca2+/CaM-stimulated proteins.  相似文献   

9.
Ca(2+)-saturated calmodulin (CaM) directly associates with and activates CaM-dependent protein kinase I (CaMKI) through interactions with a short sequence in its regulatory domain. Using heteronuclear NMR (13)C-(15)N-(1)H correlation experiments, the backbone assignments were determined for CaM bound to a peptide (CaMKIp) corresponding to the CaM-binding sequence of CaMKI. A comparison of chemical shifts for free CaM with those of the CaM.CaMKIp complex indicate large differences throughout the CaM sequence. Using NMR techniques optimized for large proteins, backbone resonance assignments were also determined for CaM bound to the intact CaMKI enzyme. NMR spectra of CaM bound to either the CaMKI enzyme or peptide are virtually identical, indicating that calmodulin is structurally indistinguishable when complexed to the intact kinase or the peptide CaM-binding domain. Chemical shifts of CaM bound to a peptide (smMLCKp) corresponding to the calmodulin-binding domain of smooth muscle myosin light chain kinase are also compared with the CaM.CaMKI complexes. Chemical shifts can differentiate one complex from another, as well as bound versus free states of CaM. In this context, the observed similarity between CaM.CaMKI enzyme and peptide complexes is striking, indicating that the peptide is an excellent mimetic for interaction of calmodulin with the CaMKI enzyme.  相似文献   

10.
The myristoylated alanine-rich C kinase substrate (MARCKS) and the MARCKS-related protein (MRP) are members of a distinct family of protein ki-nase C (PKC) substrates that bind calmodulin (CaM) in a manner regulated by Ca2+ and phosphorylation by PKC. The CaM binding region overlaps with the PKC phosphorylation sites, suggesting a potential coupling between Ca2+-CaM signalling and PKC-mediated phosphorylation cascades. We have studied Ca2+ binding of CaM complexed with CaM binding peptides from MARCKS and MRP using flow dialysis, NMR and circular dichroism (CD) spectroscopy. The wild-type MARCKS and MRP peptides induced significant increases in the Ca2+ affinity of CaM (pCa 6.1 and 5.8, respectively, compared to 5.2, for CaM in the absence of bound peptides), whereas a modified MARCKS peptide, in which the four serine residues susceptible to phosphorylation in the wild-type sequence have been replaced with aspartate residues to mimic phosphorylation, had smaller effect (pCa 5.6). These results are consistent with the notions that phosphorylation of MARCKS reduces its binding affinity for CaM and that the CaM binding affinity of the peptides is coupled to the Ca2+ affinity of CaM. All three MARCKS/MRP peptides perturbed the backbone NMR resonances of residues in both the N- and C-terminal domains of CaM and, in addition, the wild-type MARCKS and the MRP peptides induced strong positive cooperativity in Ca2+ binding by CaM, suggesting that the peptides interact with the amino- and carboxy-terminal domains of CaM simultaneously. NMR analysis of the Ca2+-CaM-MRP peptide complex, as well as CD measurements of Ca2+-CaM in the presence and absence of MARCKS/MRP peptides suggest that the peptide bound to CaM is non-helical, in contrast to the α-helical conformation found in the CaM binding regions of myosin light-chain kinase and CaM-dependent protein kinase II. The adaptation of the CaM molecule for binding the peptide requires disruption of its central helical linker between residues Lys-75 and Glu-82. Received: 26 September 1996 / 22 October 1996  相似文献   

11.
The calcium-regulatory protein calmodulin (CaM) can bind with high affinity to a region in the cytoplasmic C-terminal tail of glycoprotein 41 of simian immunodeficiency virus (SIV). The amino acid sequence of this region is (1)DLWETLRRGGRW(13)ILAIPRRIRQGLELT(28)L. In this work, we have used near- and far-uv CD, and fluorescence spectroscopy, to study the orientation of this peptide with respect to CaM. We have also studied biosynthetically carbon-13 methyl-Met calmodulin by (1)H, (13)C heteronuclear multiple quantum coherence NMR spectroscopy. Two Trp-substituted peptides, SIV-W3F and SIV-W12F, were utilized in addition to the intact SIV peptide. Two half-peptides, SIV-N (residues 1-13) and SIV-C (residues 13-28) were also synthesized and studied. The spectroscopic results obtained with the SIV-W3F and SIV-W12F peptides were generally consistent with those obtained for the native SIV peptide. Like the native peptide, these two analogues bind with an alpha-helical structure as shown by CD spectroscopy. Fluorescence intermolecular quenching studies suggested binding of Trp3 to the C-lobe of CaM. Our NMR results show that SIV-N can bind to both lobes of calcium-CaM, and that it strongly favors binding to the C-terminal hydrophobic region of CaM. The SIV-C peptide binds with relatively low affinity to both halves of the protein. These data reveal that the intact SIV peptide binds with its N-terminal region to the carboxy-terminal region of CaM, and this interaction initiates the binding of the peptide. This orientation is similar to that of most other CaM-binding domains.  相似文献   

12.
The solution structures of complexes between calcium-saturated calmodulin (Ca (2+)/CaM) and a CaM-binding domain of the HIV-1 matrix protein p17 have been determined by small-angle X-ray scattering with use of synchrotron radiation as an intense and stable X-ray source. We used three synthetic peptides of residues 11-28, 26-47, and 11-47 of p17 to demonstrate the diversity of CaM-binding conformation. Ca (2+)/CaM complexed with residues 11-28 of p17 adopts a dumbbell-like structure at a molar ratio of 1:2, suggesting that the two peptides bind each lobe of CaM, respectively. Ca (2+)/CaM complexed with residues 26-47 of p17 at a molar ratio of 1:1 adopts a globular structure similar to the NMR structure of Ca (2+)/CaM bound to M13, which adopted a compact globular structure. In contrast to these complexes, Ca (2+)/CaM binds directly with both CaM-binding sites of residues 11-47 of p17 at a molar ratio of 1:1, which induces a novel structure different from known structures previously reported between Ca (2+)/CaM and peptide. A tertiary structural model of the novel structure was constructed using the biopolymer module of Insight II 2000 on the basis of the scattering data. The two domains of CaM remain essentially unchanged upon complexation. The hinge motions, however, occur in a highly flexible linker of CaM, in which the electrostatic residues 74Arg, 78Asp, and 82Glu interact with N-terminal electrostatic residues of the peptide (residues 12Glu, 15Arg, and 18Lys). The acidic residues in the N-terminal domain of CaM interact with basic residues in a central part of the peptide, thereby enabling the central part to change the conformations, while an acidic residue in the C-terminal domain interacts with two basic residues in the two helical sites of the peptide. The overall structure of the complex adopts an extended structure with the radius of gyration of 20.5 A and the interdomain distance of 34.2 A. Thus, the complex is principally stabilized by electrostatic interactions. The hydrophobic patches of Ca (2+)/CaM are not responsible for the binding with the hydrophobic residues in the peptide, suggesting that CaM plays a role to sequester the myristic acid moiety of p17.  相似文献   

13.
14.
Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins.  相似文献   

15.
Calmodulin (CaM) binds in a Ca2+-dependent manner to the intracellular C-terminal domains of most group III metabotropic glutamate receptors (mGluRs). Here we combined mutational and biophysical approaches to define the structural basis of CaM binding to mGluR 7A. Ca2+/CaM was found to interact with mGluR 7A primarily via its C-lobe at a 1:1 CaM:C-tail stoichiometry. Pulldown experiments with mutant CaM and mGluR 7A C-tail constructs and high resolution NMR with peptides corresponding to the CaM binding region of mGluR 7A allowed us to define hydrophobic and ionic interactions required for Ca2+/CaM binding and identified a 1-8-14 CaM-binding motif. The Ca2+/CaM.mGluR 7A peptide complex displays a classical wraparound structure that closely resembles that formed by Ca2+/CaM upon binding to smooth muscle myosin light chain kinase. Our data provide insight into how Ca2+/CaM regulates group III mGluR signaling via competition with intracellular proteins for receptor-binding sites.  相似文献   

16.
Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca2+-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaM’s backbone conformation and a structural plasticity in CaM’s domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in the complex, they lack the translational information required to position the domains on the bound peptide and highlight the necessity of intermolecular NOEs. Here we employ a specific isotope labeling strategy in which the role of methionine in CaM-peptide interactions is exploited to collect these critical NOEs. By 1H, 13C-labeling the methyl groups of deuterated methionine against a 2H, 12C background, we can acquire a 13C-edited NOESY characterized by simplified, easily analyzable spectra. Together with measured CaM backbone HN-N RDCs and intrapeptide NOE-based distances, these intermolecular NOEs provide restraints for a low temperature torsion-angle dynamics and simulated annealing protocol used to calculate the complex structure. We have applied our method to a CaM complex previously solved through X-ray crystallography: Ca2+-CaM bound to the CaM kinase I peptide (PDB code: 1MXE). The resulting structure has a backbone RMSD of 1.6 Å to that previously published. We have also used this test complex to investigate the importance of homologous model selection on the calculated outcome. In addition to having application for fast complex structure determination, this method can be used to determine the structures of difficult complexes characterized by chemical shift overlap and broad signals for which the traditional method based on the use of fully 13C, 15N-labeled CaM fails.  相似文献   

17.
Several crystal and NMR structures of calmodulin (CaM) in complex with fragments derived from CaM-regulated proteins have been reported recently and reveal novel ways for CaM to interact with its targets. This review will discuss and compare features of the interaction between CaM and its target domains derived from the plasma membrane Ca2+-pump, the Ca2+-activated K+-channel, the Ca2+/CaM-dependent kinase kinase and the anthrax exotoxin. Unexpected aspects of CaM/target interaction observed in these complexes include: (a) binding of the Ca2+-pump domain to only the C-terminal part of CaM (b) dimer formation with fragments of the K+-channel (c) insertion of CaM between two domains of the anthrax exotoxin (d) binding of Ca2+ ions to only one EF-hand pair and (e) binding of CaM in an extended conformation to some of its targets. The mode of interaction between CaM and these targets differs from binding conformations previously observed between CaM and peptides derived from myosin light chain kinase (MLCK) and CaM-dependent kinase IIalpha (CaMKIIalpha). In the latter complexes, CaM engulfs the CaM-binding domain peptide with its two Ca2+-binding lobes and forms a compact, ellipsoid-like complex. In the early 1990s, a model for the activation of CaM-regulated proteins was developed based on this observation and postulated activation through the displacement of an autoinhibitory or regulatory domain from the target protein upon binding of CaM. The novel structures of CaM-target complexes discussed here demonstrate that this mechanism of activation may be less general than previously believed and seems to be not valid for the anthrax exotoxin, the CaM-regulated K+-channel and possibly also not for the Ca2+-pump.  相似文献   

18.
The type IIb class of plant Ca(2+)-ATPases contains a unique N-terminal extension that encompasses a calmodulin (CaM) binding domain and an auto-inhibitory domain. Binding of Ca(2+)-CaM to this region can release auto-inhibition and activates the calcium pump. Using multidimensional NMR spectroscopy, we have determined the solution structure of the complex of a plant CaM isoform with the CaM-binding domain of the well characterized Ca(2+)-ATPase BCA1 from cauliflower. The complex has a rather elongated structure in which the two lobes of CaM do not contact each other. The anchor residues Trp-23 and Ile-40 form a 1-8-18 interaction motif. Binding of Ca(2+)-CaM gives rise to the induction of two helical parts in this unique target peptide. The two helical portions are connected by a highly positively charged bend region, which represents a relatively fixed angle and positions the two lobes of CaM in an orientation that has not been seen before in any complex structure of calmodulin. The behavior of the complex was further characterized by heteronuclear NMR dynamics measurements of the isotope-labeled protein and peptide. These data suggest a unique calcium-driven activation mechanism for BCA1 and other plant Ca(2+)-ATPases that may also explain the action of calcium-CaM on some other target enzymes. Moreover, CaM activation of plant Ca(2+)-ATPases seems to occur in an organelle-specific manner.  相似文献   

19.
Yamniuk AP  Vogel HJ 《Biochemistry》2005,44(8):3101-3111
The conserved calmodulin (CaM) isoform SCaM-1 and the divergent SCaM-4 from soybean bind to many of the same target enzymes, but differentially activate or competitively inhibit them. Class 1 target enzymes are activated by both calcium (Ca(2+))-bound SCaM-1 (Ca(2+)-SCaM-1) and Ca(2+)-bound SCaM-4 (Ca(2+)-SCaM-4), while class 2 enzymes are activated by Ca(2+)-SCaM-1 but competitively inhibited by Ca(2+)-SCaM-4, and class 3 enzymes are activated by Ca(2+)-SCaM-4 but competitively inhibited by Ca(2+)-SCaM-1. To determine whether these differences can be attributed to unique interactions with the CaM-binding domains (CaMBD) of these enzymes, we have studied the binding of each protein to peptides derived from the CaMBD of a representative target enzyme from each of these three classes. Using a combination of NMR spectroscopy and isothermal titration calorimetry, we demonstrate that the N- and C-domains of either Ca(2+)-SCaM bind to each peptide to form structurally compact complexes driven by the burial of hydrophobic surfaces. Interestingly, the interactions with the CaMBD peptides from classes 1 and 2 are similar for the two proteins; however, binding to the peptide from class 3 is structurally and thermodynamically distinct for Ca(2+)-SCaM-1 and -4. We also demonstrate that both calcium-free SCaM-1 (apo-SCaM-1) and calcium-free SCaM-4 (apo-SCaM-4) bind to the CaMBD from cyclic nucleotide phosphodiesterase, and that the interactions are similar to each other and to the interactions with apo-mammalian CaM. Therefore, the apo-SCaMs are also capable of binding to the same target enzymes, which could provide an additional mechanism for CaM-dependent signaling in plants.  相似文献   

20.
Calmodulin (CaM), the primary intracellular Ca2+ receptor, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Recognition between CaM and its target sequence in rat olfactory cyclic nucleotide-gated ion channel (OLFp) was investigated by circular dichroism (CD), fluorescence, and NMR spectroscopy. Fluorescence data showed the OLFp tightly bound to CaM with a dissociation constant of 12?nM in a 1:1 stoichiometry. Far-UV CD data showed that approximately 60% of OLFp residues formed α-helical structures when associated with CaM. NMR data showed that most of the 15N–1H HSQC cross-peaks of the 15N-labeled CaM not only shifted but also split into two sets of peaks upon association with the OLFp. Our data indicated that the two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not interexchangeable within the NMR time scale. In light of the palindromic sequence of OLFp (FQRIVRLVGVIRDW) for CaM targeting, we proposed that the helical OLFp with C2 symmetry may bind to CaM in two orientations. This hypothesis is supported by the observation that only one set of 15N–1H HSQC cross-peaks of the 15N-labeled CaM was detected upon association with OLFp-M13 chimeric peptide (OLFMp), a mutated OLFp lacking the palindromic feature. The binding specificity of OLFMp to CaM was restored when the palindromic feature was destroyed. Binding modes of CaM/OLFp and CaM/OLFMp simulated by molecular docking were in accord with their distinct patterns observed in HSQC spectra. Our studies suggest that the palindromic residues in OLFp are crucial for the orientation-specific recognition by CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号