首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
氧化葡萄糖酸杆菌Gluconobacter oxydans NH-10能够转化D-阿拉伯糖醇,经木酮糖生成木糖醇,但该菌中存在的NAD+型D-阿拉伯糖醇脱氢酶可将中间产物D-木酮糖还原成D-阿拉伯糖醇,从而影响木糖醇的积累.利用同源重组基因敲除的方法构建G.oxydans NH-10 NAD+型D-阿拉伯糖醇脱氢酶( sArDH)基因敲除突变株.PCR结果显示:sArDH基因在1株重组菌中完全被卡那抗性基因替代,表明sArDH基因敲除突变体构建成功.生物学特性鉴定显示:突变菌在菌落形态,生长状态方面与原始菌无明显差异.静息细胞转化D-阿拉伯糖醇结果显示,突变株不存在还原D-木酮糖产D-阿拉伯糖醇的逆反应,终产物木糖醇的产量有所提高.  相似文献   

2.
用在L-阿拉伯糖上培养的白地霉(Geotrichum candidum Link)2.361无细胞提取液进行了L-阿拉伯糖代谢酶体系的研究。查明L-阿拉伯糖代谢的变化途径如下: L-阿拉伯糖+NADPH_2 戊醛糖还原酶L-阿拉伯糖醇+NADP L-阿拉伯糖醇+NAD L-阿拉伯糖醇脱氢酶L-木酮糖+NADH_2 L-木酮糖+NADPH_2 NADP-木糖醇脱氢酶木糖醇+NADP 木糖醇+NAD NAD-木糖醇脱氢酶D-木酮糖+NADH_2 D-木酮糖+ATP D-木酮糖激酶→D-木酮糖-5-磷酸+ADP L-阿拉伯糖醇脱氢酶仅存在于L-阿拉伯糖培养的菌体中,而不存在于木糖培养的菌体中。可见它与木糖醇脱氢酶不是同一个酶。这一点与文献报导的不同,在黄青霉中这两种酶活力被认为是同一种酶的作用。  相似文献   

3.
在导入表达毕赤酵母(Pichia stipitis)木糖还原酶(xylose reductase,XR)和木糖醇脱氢酶(xylitol dehydrogenase,XDH)基因的重组酿酒酵母中,木糖还原酶活性主要依赖辅酶NADPH,木糖醇脱氢酶活性依赖辅酶 NAD+,两者的辅助因子不同导致细胞内电子氧化还原的不平衡,是造成木糖醇积累,影响木糖代谢和乙醇产量的主要原因之一.将经过基因工程改造获得的NADH高亲和力的木糖还原酶突变基因m1,与毕赤酵母木糖醇脱氢酶(PsXDH)基因xyl2共转染酿酒酵母AH109,以转染毕赤酵母木糖还原酶(PsXR)基因xyl1和xyl2重组质粒的酵母细胞为对照菌株,在SC/-Leu/-Trp营养缺陷型培养基中进行筛选,获得的阳性转化子分别命名为AH-M-XDH和AH-XR-XDH.重组酵母在限制氧通气条件下对木糖和葡萄糖进行共发酵摇瓶培养,HPLC检测发酵底物的消耗和代谢产物的产出情况.结果显示,与对照菌株AH-XR-XDH相比,AH-M-XDH的木糖利用率明显提高,乙醇得率增加了16%,木糖醇产生下降了41.4%.结果证实,通过基因工程改造的木糖代谢关键酶,可用于酿酒酵母发酵木糖生产乙醇,其能通过改善酿酒酵母细胞内氧化还原失衡的问题,提高木糖利用率和乙醇产率.  相似文献   

4.
瑞氏木霉木糖醇脱氢酶基因的分离与鉴定   总被引:2,自引:0,他引:2  
将在木聚糖上生长的瑞氏木霉(Trichoderma reesei)RutC-30的cDNA文库全部质粒转化已携带有毕赤氏酵(Pithia stipitis)木糖还原酶基因的重组酿酒酵母(Saccharomycescerevisiae)菌株H475,在H475中构建了瑞氏木霉的cDNA表达亚文库。在以木糖为唯一碳源的选择性酵母合成培养基上,从该亚文库中筛选到瑞氏木霉木糖醇脱氢酶cDNA基因.该基因片段长为1.3kb。Southern、Norhern印迹杂交分析和蛋白质凝胶电泳结果表明该基因确实来源于瑞氏木霉,所编码蛋白质分子量约为40kDa。携带有毕赤氏酵母木糖还原酶和瑞氏木霉木糖醇脱氢酶基因的重组酵母能够在以木糖为唯一碳源的培养基上生长,并能将90%以上的木糖转化为木糖醇、乙醇和其它副产品。  相似文献   

5.
采用双载体系统,将携带有瑞氏木霉木糖醇脱氢酶基因的表达质粒pAJ401-Xdh1转化已带有树干毕赤氏酵母木糖还原酶基因的重组酿酒酵母H475,构建了同时带有毕赤氏酵母木糖还原酶基因和瑞氏木霉木糖醇脱氢酶基因的重组酿酒酵母HX1。研究了重组酿酒酵母HX1对木糖的转化利用情况。  相似文献   

6.
从氧化葡萄糖酸杆菌(Gluconobacter oxydans)的基因组DNA上扩增出木糖醇脱氢酶基因xdh,构建了诱导型表达载体pSE-xdh,导入E.coli JM109后获得了高效表达木糖醇脱氢酶基因的重组菌JM109/pSE-xdh。通过HisTrap HP亲和层析和SephacrylS 300分子筛两步纯化从细胞中得到纯酶,并对酶学性质进行研究。XDH最适还原反应的pH值为5.0,最适还原反应的温度为35℃;最适氧化反应的pH值为11.0,最适氧化反应的温度为30℃。重组菌中的XDH依赖NADH,对NADH的米氏常数Km=57.8 mmol/L,最大反应速率Vmax=1209.1 mmol/(ml·min)。重组菌的XDH酶活力为13.9 U/mg。利用重组菌和原始菌混合静止细胞转化D 木酮糖,16 h 28.0 g/L D木酮糖生成16.7 g/L木糖醇,而原始菌单独转化只生成8.3 g/L木糖醇。  相似文献   

7.
木糖醇是一种在食品、医药、轻工等领域具有广泛用途的多元醇,目前主要通过酸水解木聚糖获得木糖并进一步化学催化加氢方法制备。提取木糖过程中会产生大量的木糖母液副产物,其中含有一定浓度的葡萄糖、木糖、阿拉伯糖等碳源,以及少量的糠醛、四氢呋喃等物质。研究微生物转化木糖母液生产高附加值化学品不仅能够提高木糖母液的利用价值,而且能够减少环境污染。热带假丝酵母不仅能够利用葡萄糖,也具有高效的木糖代谢途径。首先利用代谢工程技术删除了热带假丝酵母菌株的木糖醇脱氢酶基因,获得能够转化木糖积累木糖醇的突变株。在此基础上,评价了突变株在木糖母液培养基中的发酵性能。通过单因素优化实验确定了突变株发酵生产木糖醇较优的发酵工艺:培养基组成为木糖母液300g/L,玉米浆5g/L;最佳发酵条件为:发酵温度35℃,初始p H为5.0,接种量15%,200r/min摇床培养140h。利用优化后的发酵工艺,木糖醇产量达到83.01g/L。初步建立了转化木糖母液生产木糖醇的工艺,为进一步利用木糖母液奠定了基础。  相似文献   

8.
代谢工程改造大肠杆菌合成D-1,2,4-丁三醇   总被引:1,自引:1,他引:0  
【目的】D-1,2,4-丁三醇是一种四碳的多元醇,在军事和医药领域具有广泛的应用。为实现生物法一步转化生产D-1,2,4-丁三醇,对Escherichia coli W3100的木糖代谢途径进行改造。【方法】将来源于柄杆菌的D-木糖脱氢酶基因xylB和恶臭假单胞菌的苯甲酰甲酸脱羧酶基因mdlC克隆至E.coli W3100,得到重组菌E.coli(pEtac-mdlC-tac-xylB)。在此基础上对重组菌代谢木糖合成D-1,2,4-丁三醇的能力进行考察。【结果】在30°C下,以30 g/L D-木糖为底物,重组菌E.coli(pEtac-mdlC-tac-xylB)的D-1,2,4-丁三醇产量达到了0.9 g/L,摩尔转化率为4%。【结论】实现了D-1,2,4-丁三醇的一步法发酵生产,为国内开展相关研究奠定了坚实的基础。  相似文献   

9.
在酿酒酵母中同时表达木糖还原酶基因(xyl1)和木糖醇脱氢酶基因(xyl2)可使酿酒酵母利用木糖发酵生成乙醇.但由于两种酶所依赖的辅酶不同导致酿酒酵母细胞内氧化还原失衡,致使中间产物大量积累,降低了乙醇产率.本研究从树干毕赤酵母中克隆了木糖醇脱氢酶基因,通过与银叶粉虱山梨醇脱氢酶[其活性依赖NADP+(H)]序列进行对...  相似文献   

10.
【目的】通过系统研究一个、两个及多个非氧化磷酸戊糖(PP)途径基因组合过表达对酿酒酵母木糖代谢的影响,以优化重组菌株的构建过程,构建高效的木糖代谢酿酒酵母菌株。【方法】在酿酒酵母中双拷贝过表达上游代谢途径的关键酶(木糖还原酶XR,木糖醇脱氢酶XDH,木酮糖激酶XKS),在此基础上构建了一系列PP途径基因过表达菌株,并对其木糖发酵性能进行比较研究。【结果】木糖发酵结果显示,不同组合过表达PP途径基因能不同程度改善重组菌株的木糖发酵性能。其中,过表达PP途径全部基因(RKI1,RPE1,TAL1和TKL1)使菌株的发酵性能最优,其乙醇产率和产量较对照菌株分别提高了39.25%和12.57%,同时较其他基因组合过表达菌株也有不同程度的改善。【结论】通过构建PP途径基因不同组合过表达酿酒酵母菌株,首次对PP途径基因对酿酒酵母木糖代谢的影响进行了系统研究,结果表明,不同组合强化PP途径基因对重组菌株木糖代谢的影响存在差异,相对于其他基因过表达组合,同步过表达PP途径全部基因最有利于碳通量流向乙醇。  相似文献   

11.
A NADP-dependent d-arabitol dehydrogenase gene was cloned from Gluconobacter oxydans CGMCC 1.110 and functionally expressed in Escherichia coli. With d-arabitol as sole carbon source, E. coli transformants grew rapidly in minimal medium, and produced d-xylulose. The enzymatic properties of the 29kDa enzyme were documented. The DNA sequence surrounding the gene suggested that it is part of an operon with several components of a sugar alcohol transporter system, and the d-arabitol dehydrogenase gene belongs to the short-chain dehydrogenase family.  相似文献   

12.
AIMS: To determine the effects on xylitol accumulation and ethanol yield of expression of mutated Pichia stipitis xylitol dehydrogenase (XDH) with reversal of coenzyme specificity in recombinant Saccharomyces cerevisiae. METHODS AND RESULTS: The genes XYL2 (D207A/I208R/F209S) and XYL2 (S96C/S99C/Y102C/D207A/I208R/F209S) were introduced into S. cerevisiae, which already contained the P. stipitis XYL1 gene (encoding xylose reductase, XR) and the endogenously overexpressed XKS1 gene (encoding xylulokinase, XK). The specific activities of mutated XDH in both strains showed a distinct increase in NADP(+)-dependent activity in both strains with mutated XDH, reaching 0.782 and 0.698 U mg(-1). In xylose fermentation, the strain with XDH (D207A/I208R/F209S) had a large decrease in xylitol and glycerol yield, while the xylose consumption and ethanol yield were decreased. In the strain with XDH (S96C/S99C/Y102C/D207A/I208R/F209S), the xylose consumption and ethanol yield were also decreased, and the xylitol yield was increased, because of low XDH activity. CONCLUSIONS: Changing XDH coenzyme specificity was a sufficient method for reducing the production of xylitol, but high activity of XDH was also required for improved ethanol formation. SIGNIFICANCE AND IMPACT OF THE STUDY: The difference in coenzyme specificity was a vital parameter controlling ethanolic xylose fermentation but the XDH/XR ratio was also important.  相似文献   

13.
目的:从氧化葡糖杆菌H763中克隆sndh-sdh基因簇,在大肠杆菌和氧化葡糖杆菌621H中分别表达山梨酮脱氢酶-山梨糖脱氢酶(SNDH-SDH),并检测其活性。方法与结果:以氧化葡糖杆菌H763基因组DNA为模板,PCR扩增包括启动子、结构基因及终止序列在内的sndh-sdh基因簇,回收3533 bp的扩增产物,连入pMD18T载体,转化至大肠杆菌DH5α中表达;以山梨糖或木糖为底物,DCIP法检测菌体裂解液,DCIP检测液颜色由蓝绿色变为黄色,表明大肠杆菌表达产物具有脱氢酶活性。构建pBBR1MCS2-sndh-sdh载体,通过接合转移导入氧化葡糖杆菌621H,重组葡糖杆菌在以山梨醇或山梨糖为底物的培养基中培养,采用薄层层析检测法检测其培养上清中的代谢产物,层析板上显示了2-酮基-L-古龙酸斑点。结论:重组大肠杆菌DH5α和氧化葡糖杆菌621H中均表达了有脱氢酶活性的SNDH-SDH。  相似文献   

14.
【目的】利用山梨糖脱氢酶醌酶活性从氧化葡糖杆菌H24中分离PQQ生物合成基因簇。【方法】利用ptsG位点整合sdh基因的大肠杆菌JM109作为宿主菌构建了氧化葡糖杆菌H24的基因组DNA文库。通过山梨糖脱氢酶活性检测,从文库中筛选具有PQQ合成能力的单菌落并进行亚克隆。【结果】从氧化葡糖杆菌H24的基因组文库中筛选得到一株具有山梨糖脱氢酶活性的单菌落,亚克隆后序列分析显示插入片段全长5400bp,对应5个编码框(pqqABCDE),与其他细菌PQQ生物合成基因簇有很高的序列同源性。【结论】利用山梨糖脱氢酶醌酶活性成功从氧化葡糖杆菌H24中分离克隆得到了PQQ生物合成基因簇pqqABCDE。  相似文献   

15.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

16.
The biotransformation of D-arabitol into xylitol was investigated with focus on the conversion of D-xylulose into xylitol. This critical conversion was accomplished using Escherichia coli to co-express a xylitol dehydrogenase gene from Gluconobacter oxydans and a cofactor regeneration enzyme gene which was a glucose dehydrogenase gene from Bacillus subtilis for system 1 and an alcohol dehydrogenase gene from G. oxydans for system 2. Both systems efficiently converted D-xylulose into xylitol without the addition of expensive NADH. Approximately 26.91 g/L xylitol was obtained from around 30 g/L D-xylulose within system 1 (E. coli Rosetta/Duet-xdh-gdh), with a 92% conversion yield, somewhat higher than that of system 2 (E. coli Rosetta/Duet-xdh-adh, 24.9 g/L, 85.2%). The xylitol yields for both systems were more than 3-fold higher compared to that of the G. oxydans NH-10 cells (7.32 g/L). The total turnover number (TTN), defined as the number of moles of xylitol formed per mole of NAD(+), was 32,100 for system 1 and 17,600 for system 2. Compared with that of G. oxydans NH-10, the TTN increased by 21-fold for system 1 and 11-fold for system 2, hence, the co-expression systems greatly enhanced the NADH supply for the conversion, benefiting the practical synthesis of xylitol.  相似文献   

17.
木糖醇脱氢酶(xylitol dehydrogenase, XDH)可以氧化木糖醇生成木酮糖,处于木糖代谢的节点位置。利用PCR方法克隆得到了休哈塔假丝酵母(Candida shehatae) 20335的木糖醇脱氢酶基因、质粒pKT0150的ADH1终止子序列和G418抗性基因(KanR),以及酿酒酵母(Saccharomyces cerevisiae) W5特定的2.2 kb的rDNA片段。以酿酒酵母整合载体p406ADH1为骨架,利用基因工程手段构建一个多拷贝整合表达载体pLX-AGRX。将重组载体pLX-AGRX线性化转入到酿酒酵母W5后,通过高浓度G418筛选和PCR双重鉴定,证实重组载体pLX-AGRX已整合到酿酒酵母W5基因组上,测定木糖醇脱氢酶酶活可达65.957 4 U/mg。  相似文献   

18.
代谢工程改善野生酵母利用木糖产乙醇的性能   总被引:1,自引:0,他引:1  
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

19.
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号