首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
Root hair-specific expansins modulate root hair elongation in rice   总被引:1,自引:0,他引:1  
Root hair growth requires intensive cell‐wall modification. This study demonstrates that root hair‐specific expansin As, a sub‐clade of the cell wall‐loosening expansin proteins, are required for root hair elongation in rice (Oryza sativa L.). We identified a gene encoding EXPA17 (OsEXPA17) from a rice mutant with short root hairs. Promoter::reporter transgenic lines exhibited exclusive OsEXPA17 expression in root hair cells. The OsEXPA17 mutant protein (OsexpA17) contained a point mutation, causing a change in the amino acid sequence (Gly104→Arg). This amino acid alteration is predicted to disrupt a highly conserved disulfide bond in the mutant. Suppression of OsEXPA17 by RNA interference further confirmed requirement for the gene in root hair elongation. Complementation of the OsEXPA17 mutant with other root hair EXPAs (OsEXPA30 and Arabidopsis EXPA7) can restore root hair elongation, indicating functional conservation of these root hair EXPAs in monocots and dicots. These results demonstrate that members of the root hair EXPA sub‐clade play a crucial role in root hair cell elongation in Graminaceae.  相似文献   

2.
3.
Impaired growth in transgenic plants over-expressing an expansin isoform   总被引:7,自引:0,他引:7  
Expansins are cell wall proteins characterised by their ability to stimulate wall loosening during cell expansion. The expression of some expansin isoforms is clearly correlated with growth and the external application of expansins can stimulate cell expansion in vivo in several systems. We report here the expression of a heterologous expansin coding sequence in transgenic tomato plants (Lycopersicon esculentum Mill.) under the control of a constitutive promoter. In some transgenic lines with high levels of expansin activity extractable from cell walls, we observed alterations of growth: mature plants were stunted, with shorter leaves and internodes, and dark-grown seedlings had shorter and wider hypocotyls than their wild-type counterparts. Examination of hypocotyl sections revealed similar differences at the cellular level: cortical and epidermal cells were shorter and wider than those from wild-type seedlings. The observed stimulation of radial expansion did not compensate for the decreased elongation, and overall growth was reduced in the transgenics. As this observation can seem paradoxical given the known effect of expansins on isolated cell walls, we examined the mechanical behaviour of transgenic tissue. We measured a decrease in hypocotyl elongation in response to acidic pH in the transformants. This result may account for the alterations in cell expansion, and could itself be explained by a reduced susceptibility of transgenic cell walls to expansin action.  相似文献   

4.
H T Cho  H Kende 《The Plant cell》1997,9(9):1661-1671
Expansins are a family of proteins that catalyze long-term extension of isolated cell walls. Previously, two expansin proteins have been isolated from internodes of deepwater rice, and three rice expansin genes, Os-EXP1, Os-EXP2, and Os-EXP3, have been identified. We report here on the identification of a fourth rice expansin gene, Os-EXP4, and on the expression pattern of the rice expansin gene family in deepwater rice. Rice expansin genes show organ-specific differential expression in the coleoptile, root, leaf, and internode. In these organs, there is increased expression of Os-EXP1, Os-EXP3, and Os-EXP4 in developmental regions where elongation occurs. This pattern of gene expression is also correlated with acid-induced in vitro cell wall extensibility. Submergence and treatment with gibberellin, both of which promote rapid internodal elongation, induced accumulation of Os-EXP4 mRNA before the rate of growth started to increase. Our results indicate that the expression of expansin genes in deepwater rice is differentially regulated by developmental, hormonal, and environmental signals and is correlated with cell elongation.  相似文献   

5.
Expansins are unique plant cell wall proteins that possess the ability to induce immediately cell wall extension in vitro and cell expansion in vivo. To investigate the biological functions of expansins that are abundant in wood-forming tissues, we cloned two expansin genes from the differentiating xylem of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Phylogenetic reconstruction indicated that they belong to α-expansin (EXPA), named ClEXPA1 and ClEXPA2. Expression pattern analysis demonstrated that they are preferentially expressed in the cambium region. Overexpression of ClEXPA1 and ClEXPA2 in tobacco plants yielded pleiotropic phenotypes of plant height, stem diameter, leaf number and seed pod. The height and diameter growth of the 35S(pro) :ClEXPA1 and 35S(pro) :ClEXPA2 transgenic plants were increased drastically, exhibiting an enlargement of pith parenchyma cell size. Isolated cell walls of ClEXPA1 and ClEXPA2 overexpressors contained 30%-50% higher cellulose contents than the wild type, accompanied by a thickening of the cell walls in the xylem region. Both ClEXPA1 and ClEXPA2 are involved in plant growth and development, with a partially functional overlap. Expansins are not only able to induce cell expansion in different tissues/organs in vivo, but they also can act as a potential activator during secondary wall formation by directly or indirectly affecting cellulose metabolism, probably in a cell type-dependent manner.  相似文献   

6.
Wood cells, unlike most other cells in plants, grow by a unique combination of intrusive and symplastic growth. Fibers grow in diameter by diffuse symplastic growth, but they elongate solely by intrusive apical growth penetrating the pectin-rich middle lamella that cements neighboring cells together. In contrast, vessel elements grow in diameter by a combination of intrusive and symplastic growth. We demonstrate that an abundant pectin methyl esterase (PME; EC 3.1.1.11) from wood-forming tissues of hybrid aspen (Populus tremula x tremuloides) acts as a negative regulator of both symplastic and intrusive growth of developing wood cells. When PttPME1 expression was up- and down-regulated in transgenic aspen trees, the PME activity in wood-forming tissues was correspondingly altered. PME removes methyl ester groups from homogalacturonan (HG) and transgenic trees had modified HG methylesterification patterns, as demonstrated by two-dimensional nuclear magnetic resonance and immunostaining using PAM1 and LM7 antibodies. In situ distributions of PAM1 and LM7 epitopes revealed changes in pectin methylesterification in transgenic trees that were specifically localized in expanding wood cells. The results show that en block deesterification of HG by PttPME1 inhibits both symplastic growth and intrusive growth. PttPME1 is therefore involved in mechanisms determining fiber width and length in the wood of aspen trees.  相似文献   

7.
Water stress restrains plant growth. Expansin is a cell wall protein that is generally accepted to be the key regulator of cell wall extension during plant growth. In this study, we used two different wheat cultivars to study the involvement of expansin in drought tolerance. Wheat coleoptile was used as the material in experiment. Our results indicated that water stress induced an increase in acidic pH-dependant cell wall extension, which is related to expansin activity; however, water stress inhibited coleoptile elongation growth. The increased expansin activity was mainly due to increased expression of expansin protein that was upregulated by water stress, but water stress also resulted in a decrease in cell wall acidity, a negative factor for cell wall extension. Decreased plasma membrane H+-ATPase activity was involved in the alkalinization of the cell wall under water stress. The activity of expansin in HF9703 (a drought-tolerant wheat cultivar) was always higher than that in 921842 (a drought-sensitive wheat cultivar) under both normal and water stress conditions, which may be correlated with the higher expansin protein expression and plasma membrane H+-ATPase activity observed in HF9703 versus 921842. However, water stress did not change the susceptibility of the wheat cell wall to expansin, and no difference in this susceptibility was observed between the drought-tolerant and drought-sensitive wheat cultivars. These results suggest the involvement of expansin in cell elongation and the drought resistance of wheat.  相似文献   

8.
9.
A key regulator of cambial growth is the plant hormone indoleacetic acid (IAA). Here we report on altered wood characteristics and growth patterns in transgenic hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) expressing Agrobacterium tumefaciens T-DNA IAA-biosynthetic iaaM and iaaH genes. Eighteen lines simultaneously expressing both genes were regenerated. Of these, four lines, verified to be transgenic by northern blot analysis, were selected and raised under controlled growth conditions. All four lines were affected in their growth patterns, including alterations in height and stem diameter growth, internode elongation, leaf enlargement, and degree of apical dominance. Two transgenic lines, showing the most distinct phenotypic deviation from the wild type, were characterized in more detail for free and conjugated IAA levels and for wood characteristics. Both lines showed an altered IAA balance, particularly in mature leaves and roots where IAA levels were elevated. They also exhibited changes in wood anatomy, most notably a reduction in vessel size, an increase in vessel density, and changes in ray development. Thus, the recent development of techniques for gene transfer to forest trees enabled us to investigate the influence of an altered IAA balance on xylem development in an intact experimental system. In addition, the results demonstrate the possibility of manipulating wood properties in a forest tree through controlled changes of IAA concentration and distribution.  相似文献   

10.
Gibberellins (GAs) are involved in many aspects of plant development, including shoot growth, flowering and wood formation. Increased levels of bioactive GAs are known to induce xylogenesis and xylem fiber elongation in aspen. However, there is currently little information on the response pathway(s) that mediate GA effects on wood formation. Here we characterize an important element of the GA pathway in hybrid aspen: the GA receptor, GID1. Four orthologs of GID1 were identified in Populus tremula  ×  P. tremuloides ( PttGID1.1–1.4 ). These were functional when expressed in Arabidopsis thaliana , and appear to present a degree of sub-functionalization in hybrid aspen. PttGID1.1 and PttGID1.3 were over-expressed in independent lines of hybrid aspen using either the 35S promoter or a xylem-specific promoter ( LMX5 ). The 35S : PttGID1 over-expressors shared several phenotypic traits previously described in 35S:AtGA20ox1 over-expressors, including rapid growth, increased elongation, and increased xylogenesis. However, their xylem fibers were not elongated, unlike those of 35S:AtGA20ox1 plants. Similar differences in the xylem fiber phenotype were observed when PttGID1.1 , PttGID1.3 or AtGA20ox1 were expressed under the control of the LMX5 promoter, suggesting either that PttGID1.1 and PttGID1.3 play no role in fiber elongation or that GA homeostasis is strongly controlled when GA signaling is altered. Our data suggest that GAs are required in two distinct wood-formation processes that have tissue-specific signaling pathways: xylogenesis, as mediated by GA signaling in the cambium, and fiber elongation in the developing xylem.  相似文献   

11.
Expansins comprise a superfamily of plant cell wall loosening proteins that can be divided into four individual families (EXPA, EXPB, EXLA and EXLB). Aside from inferred roles in a variety of plant growth and developmental traits, little is known regarding the function of specific expansin clades, for which there are at least 16 in flowering plants (angiosperms); however, there is evidence to suggest that some expansins have cell‐specific functions, in root hair and pollen tube development, for example. Recently, two duckweed genomes have been sequenced (Spirodela polyrhiza strains 7498 and 9509), revealing significantly reduced superfamily sizes. We hypothesized that there would be a correlation between expansin loss and morphological reductions seen among highly adapted aquatic species. In order to provide an answer to this question, we characterized the expansin superfamilies of the greater duckweed Spirodela, the marine eelgrass Zostera marina and the bladderwort Utricularia gibba. We discovered rampant expansin gene and clade loss among the three, including a complete absence of the EXLB family and EXPA‐VII. The most convincing correlation between morphological reduction and expansin loss was seen for Utricularia and Spirodela, which both lack root hairs and the root hair expansin clade EXPA‐X. Contrary to the pattern observed in other species, four Utricularia expansins failed to branch within any clade, suggesting that they may be the result of neofunctionalization. Last, an expansin clade previously discovered only in eudicots was identified in Spirodela, allowing us to conclude that the last common ancestor of monocots and eudicots contained a minimum of 17 expansins.  相似文献   

12.
A gradient of development consisting of successive zones of cell division, cell elongation and cell maturation occurs along the longitudinal axis of elongating leaf blades of tall fescue (Festuca arundinacea Schreb.), a C3 grass. An increase in specific leaf weight (SLW; dry weight per unit leaf area) in the maturation region has been hypothesized to result from deposition of secondary cell walls in structural tissues. Our objective was to measure the transverse cell wall area (CWA) associated with the increase in SLW, which occurs following the cessation of leaf blade elongation at about 25 mm distal to the ligule. Digital image analysis of transverse sections at 5, 15, 45, 75 and 105 mm distal to the ligule was used to determine cell number, cell area and protoplast area of structural tissues, namely fibre bundles, mestome sheaths and xylem vessel elements, along the developmental gradient. Cell diameter, protoplast diameter and area, and cell wall thickness and area of fibre bundle cells were calculated from these data. CWA of structural tissues increased in sections up to 75 mm distal to the ligule, confirming the role of cell wall deposition in the increase in SLW (r2 = 0.924; P < or = 0.01). However, protoplast diameter of fibre cells did not decrease significantly as CWA increased, although mean thickness of fibre cell walls increased by 95 % between 15 and 105 mm distal to the ligule. Therefore, secondary cell wall deposition in fibre bundles of tall fescue leaf blades resulted in continued radial expansion of fibre cells rather than in a decrease in protoplast diameter.  相似文献   

13.
Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth.  相似文献   

14.
以甘蓝型油菜(Brassica napus L.)硼高效品种‘青油10号’和硼低效品种‘Westar 10’为研究对象,采用生物信息学分析、转录组测序和实时荧光定量PCR技术,鉴定其基因组中扩展蛋白的家族成员,并对该基因家族响应缺硼胁迫的表达差异进行分析。结果显示,甘蓝型油菜基因组中包含109个扩展蛋白,可分为4个亚家族,包括:79个扩展蛋白A(BnaEXPAs)、21个扩展蛋白B(BnaEXPBs)、5个类扩展蛋白A(BnaEXLAs)和4个类扩展蛋白B(BnaEXLBs)。同一亚家族中的扩展蛋白具有相对保守的基因结构和蛋白质基序组成。这些扩展蛋白基因分布在19条染色体上,其中10个位于硼高效QTL区间内。转录组测序分析结果表明,缺硼胁迫时‘青油10号’的根、幼叶和老叶中分别有40、18和30个扩展蛋白基因显著上调或下调表达;而‘Westar10’中分别有27、24和41个扩展蛋白基因显著上调或下调表达。其中‘青油10号’根中的BnaC04.EXPA6a,幼叶中的BnaA09.EXPA5以及老叶中的BnaA09.EXPA16、BnaC04.EXPA3、BnaCnn.EXPA5b和BnaA03.EXPA8基因的表达水平均显著高于‘Westar10’。研究结果说明甘蓝型油菜基因组中扩展蛋白基因家族数量庞大,其中高、低效品种间和不同硼水平中差异表达的扩展蛋白可能在甘蓝型油菜低硼适应性中发挥重要作用。  相似文献   

15.
We aimed to evaluate whether changes in maize (Zea mays) leaf expansion rate in response to environmental stimuli or developmental gradients are mediated by common or specific expansins, a class of proteins known to enhance cell wall extensibility. Among the 33 maize expansin or putative expansin genes analyzed, 19 were preferentially expressed at some point of the leaf elongation zone and these expansins could be organized into three clusters related to cell division, maximal leaf expansion, and cell wall differentiation. Further analysis of the spatial distribution of expression was carried out for three expansins in leaves displaying a large range of expansion rates due to water deficit, genotype, and leaf developmental stage. With most sources of variation, the three genes showed similar changes in expression and consistent association with changes in leaf expansion. Moreover, our analysis also suggested preferential association of each expansin with elongation, widening, or both of these processes. Finally, using in situ hybridization, expression of two of these genes was increased in load-bearing tissues such as the epidermis and differentiating xylem. Together, these results suggest that some expansins may be preferentially related to elongation and widening after integrating several spatial, environmental, genetic, and developmental cues.  相似文献   

16.
17.
Morphology, wood structure and cell wall composition of 35S-rolC transgenic hybrid aspen (P. tremula2tremuloides) were compared with non-transformed control trees. The transgenics are characterised by stunted growth, altered physiological parameters and light green leaves of reduced size. Histometric measurements revealed thinner fibre walls as compared to the controls. UV microspectrophotometry of individual wall layers did not reveal distinctive differences in the lignification of xylem cells, but in the extremely thin-walled fibres of the transgenics the secondary walls were less lignified as revealed by KMnO4 staining in transmission electron microscopy. In the transgenics the formation of xylem cells was delayed and the differentiation zone reduced to only a few rows. Immunocytochemical analyses revealed the deposition of lignins in less differentiated xylem cells as compared to the controls. The first labelling of condensed lignin appeared in cell corners and of non-condensed lignin in secondary walls near cell corners during the deposition of S1 polysaccharides. Because of alterations in the formation and differentiation of xylem cells, 35S-rolC transgenic aspen may be useful for studies on molecular factors controlling the differentiation continuum.  相似文献   

18.
We investigated the involvement of expansin action in determining the growth rate of internodes of floating rice (Oryza sativa L.). Floating rice stem segments in which rapid internodal elongation had been induced by submergence for 2 days were exposed to air or kept in submergence for 2 more days. Both treatments reduced the elongation rate of the internodes, and the degree of reduction was much greater in air-exposed stem segments than in continually submerged segments. These rates of internodal elongation were correlated with acid-induced cell wall extensibility and cell wall susceptibility to expansins in the cell elongation zone of the internodes, but not with extractable expansin activity. These results suggest that the reduced growth rate of internodes must be due, at least in part, to the decrease in acid-induced cell wall extensibility, which can be modulated through changes in the cell wall susceptibility to expansins rather than through expansin activity. Analysis of the cell wall composition of the internodes showed that the cellulosic and noncellulosic polysaccharide contents increased in response to exposure to air, but they remained almost constant under continued submergence although the cell wall susceptibility to expansins gradually declined even under continued submergence. The content of xylose in noncellulosic neutral sugars in the cell walls of internodes was closely and negatively correlated with changes in the susceptibility of the walls to expansins. These results suggest that the deposition of xylose-rich polysaccharides into the cell walls may be related to a decrease in acid-induced cell wall extensibility in floating rice internodes through the modulation of cell wall susceptibility to expansins.  相似文献   

19.
Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.  相似文献   

20.
Constitutive expression of the FPF1 gene in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) showed a strong effect on wood formation but no effect on flowering time. Gene expression studies showed that activity of flowering time genes PtFT1, PtCO2, and PtFUL was not increased in FPF1 transgenic plants. However, the SOC1/TM3 class gene PTM5, which has been related to wood formation and flowering time, showed a strong activity in stems of all transgenic lines studied. Wood density was lower in transgenic plants, despite significantly reduced vessel frequency which was overcompensated by thinner fibre cell walls. Chemical screening of the wood by pyrolysis GC/MS showed that FPF1 transgenics have higher fractions of cellulose and glucomannan products as well as lower lignin content. The latter observation was confirmed by UV microspectrophotometry on a cellular level. Topochemical lignin distribution revealed a slower increase of lignin incorporation in the developing xylem of the transgenics when compared with the wild-type plants. In line with the reduced wood density, micromechanical wood properties such as stiffness and ultimate stress were also significantly reduced in all transgenic lines. Thus, we provide evidence that FPF1 class genes may play a regulatory role in both wood formation and flowering in poplar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号