首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient limitation commonly constrains organisms in natural ecosystems. Typically, ecologists focus on limitation by N and P. However, other nutrients can limit growth or reproduction. Here we focus on K limitation of invertebrate consumers (Daphnia dentifera) and phytoplankton in freshwater lakes. All organisms require K for several metabolic processes. In freshwater, K could limit growth because low external concentrations can increase the energetic costs of accumulating K. Furthermore, in a study linking K to disease, we previously found that K enrichment of water from one low-K lake stimulated the growth and reproduction of Daphnia. Here we test whether K could limit the production of Daphnia and phytoplankton across lakes and years. We repeated a life table experiment using water collected from a low-K lake during a different year. K again stimulated Daphnia reproduction. We also enriched water from 12 lakes with K or P and measured short-term growth of Daphnia and the resident algal community. Both nutrients increased Daphnia growth in five lakes. However, only P enhanced algal production. P stimulation of Daphnia positively correlated with algal quantity and the ratio of C to P in seston. However, K stimulation of Daphnia was not correlated with these factors or the background concentration of K. Thus, this study shows repeatable K-limited animal physiology in nature. Further, we can exclude the hypothesis that K stimulates Daphnia indirectly by enhancing algal production. These patterns call for future physiological studies to uncover the mechanistic basis of K limitation in natural systems.  相似文献   

2.
Food quality in terms of carbon (C):phosphorus (P) ratio can constrain the success of highly demanding P herbivores as Daphnia. North Andean Patagonian lakes are ultraoligotrophic with low nutrient concentrations and well-developed euphotic zones. We investigated the distribution of the large Daphnia commutata in relation with food quality (sestonic C:P ratio) and predation risk in these lakes. The predation risk was estimated based on the fish species present and their relative eye diameter and transparency of the lake. The C:P ratios in the lakes were high, varying from 350 to >1,200. The lakes with D. commutata had significantly lower C:P ratio than those without these daphnids. On the other hand, those lakes where Daphnia is present have the lower predation risk than those were Daphnia is absent. In addition, we carried out growth experiments with neonates and natural seston of three lakes with different C:P ratio. The growth rates were inversely related with C:P of the food. Food quality and predation risk together determined the success or failure of large Daphnia populations in these Andean clear ultraoligotrophic lakes.  相似文献   

3.
De Lange  H.J.  Arts  M.T. 《Aquatic Ecology》1999,33(4):387-398
A field survey was conducted to study the relationships amongst the composition of the seston, the nutritional value of the seston for herbivorous zooplankton (Daphnia), and selected water clarity parameters. Sixteen ponds in a wetland area and seven larger lakes, all located in south central Saskatchewan, Canada, were sampled for seston. The phytoplankton species were identified, and various biochemical seston variables were measured. A biotest using the zooplankter Daphnia magna, was employed to assess the nutritional value of the seston. The best seston variable to explain Daphnia growth was the phospholipid content (simple linear regression analysis: R 2 adj = 0.50). The water absorbance ratio A250/A365 was a good predictor of lipid content of the seston. Both the absorbance ratio A250/A365 and the dissolved organic carbon (DOC) concentration were negatively correlated with Daphnia growth. We hypothesize that the penetration of visible and ultraviolet radiation is an important determinant of seston quality, especially the phospholipid content, and that this has important implications for determining ultimate growth rates of herbivorous zooplankton.  相似文献   

4.
1. It is often assumed that lakes highly influenced by terrestrial organic matter (TOM) have low zooplankton food quality because of elemental and/or biochemical deficiencies of the major particulate organic carbon pools. We used the biochemical [polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) – 20:5ω3] and elemental (C : P ratio) composition of particulate matter (PM) as qualitative measures of potential zooplankton food in two categories of lakes of similar primary productivity, but with contrasting TOM influence (clear water versus humic lakes). 2. C : P ratios (atomic ratio) in PM were similar between lake categories and were above 400. The concentration (μg L−1) and relative content (μg mg C−1) of EPA, as well as the particulate organic carbon concentration, were higher in the humic lakes than in the clear‐water lakes. 3. Our results show high fatty acid quality of PM in the humic lakes. The differences in the biochemical quality of the potential zooplankton food between lake categories can be attributed to the differences in their phytoplankton communities. 4. High biochemical quality of the food can result in high efficiency of energy transfer in the food chain and stimulate production at higher trophic levels, assuming that zooplankton are able to ingest and digest the resource available.  相似文献   

5.
Patterns and sources of variation in Daphnia phosphorus content in nature   总被引:1,自引:0,他引:1  
It has recently been shown that Daphnia can vary in the phosphorus (P)-content of their body tissues, but the relative importance of genetic versus environmental causes for this variation is unexplored. We measured variation in P-content (as % body mass) of Daphnia from eight lakes and conducted experiments to contrast three sources of variation: interspecific variation, clonal variation and phenotypic plasticity. Daphnia P-content decreased with increasing seston C:P ratio across lakes. This relationship reflected both inter- and intraspecific variation. Daphnia parvula and D. dubia exhibited high P-content and were found in shallow lakes with low C:P seston, whereas D. pulicaria had low P-content and was found in deep, stratified lakes having high C:P seston. Populations of D. dentifera spanned this lake gradient and exhibited P-content that was negatively related to seston C:P. Evidence for phenotypic plasticity came from experiments with D. pulicaria and D. dentifera collected from a lake with P-deficient seston and fed a P-sufficient diet in the laboratory. In addition, populations of D. dentifera differed in P-content even after 7 d of feeding on P-sufficient resources, suggesting within-species clonal variation. However, mesocosm experiments revealed broad and surprisingly continuous variation in the P-content of individual clones of D. pulex (range 1.54–1.05%) and D. mendotae (1.51–1.07%) over a gradient in dietary C:P. The broad range in P-content exhibited by individual clones, acclimated for generations, suggests that variation in Daphnia P-content from laboratory experiments needs to be interpreted with caution. These results also show that phenotypic variation in response to environment can be a larger source of variation in P-content than genetic differences within or among species.  相似文献   

6.
1. Numerous laboratory studies have shown that food quality is suboptimal for zooplankton growth. However, little is known about how food quality is affected by the interaction of potential global change factors in natural conditions. Using field enclosures in a high altitude Spanish lake, seston was exposed to increasing phosphorus (P) concentrations in the absence and presence of UV radiation (UVR) to test the hypothesis that interactions between these factors affected the biochemical and stoichiometric composition of seston in ways not easily predicted from studies of single factors. 2. Phosphorus enrichment increased the content of total fatty acids (TFA), ω3‐polyunsaturated fatty acids (ω3‐PUFA) and chlorophyll‐a : carbon (Chl‐a : C) and C : N ratios in seston. The pronounced increase in ω3‐PUFA was largely explained by the enhancement of 18:3n‐3 (α‐linolenic acid). In contrast, P‐enrichment lowered the content of highly unsaturated fatty acids (HUFA), the HUFA : PUFA ratio and, at high P loads, seston C : P ratio. Although phytoplankton assemblages dominated by Chlorophytes were not rich in HUFA, seston in the control had substantially higher 20:4n‐6 (arachidonic acid, ARA) content (79% of HUFA) than did P‐enriched enclosures. 3. The UVR increased the content of ω3‐PUFA and TFA in seston at the two ends of the trophic gradient generated at ambient and high concentrations of P, but decreased seston C : P and HUFA at all points on this gradient. ARA was not detected in the presence of UVR. 4. The interaction between P and UVR was significant for seston HUFA and C : P ratios, indicating that the effect of UVR in reducing HUFA (decreased food quality) and C : P ratios (enhanced food quality) was most pronounced at the low nutrient concentrations characteristic of oligotrophic conditions and disappeared as P increased. Therefore, any future increase in UVR fluxes will probably affect most strongly the food quality of algae inhabiting oligotrophic pristine waters although, at least in the Mediterranean region, these effects could be offset by greater deposition of P from the atmosphere.  相似文献   

7.
Here, we present data that for the first time suggests that the effects of atmospheric nitrogen (N) deposition on nutrient limitation extend into the food web. We used a novel and sensitive assay for an enzyme that is over‐expressed in animals growing under dietary phosphorus (P) deficiency (alkaline phosphatase activity, APA) to assess the nutritional status of major crustacean zooplankton taxa in lakes across a gradient of atmospheric N deposition in Norway. Lakes receiving high N deposition had suspended organic matter (seston) with significantly elevated carbon:P and N:P ratios, indicative of amplified phytoplankton P limitation. This P limitation appeared to be transferred up the food chain, as the cosmopolitan seston‐feeding zooplankton taxa Daphnia and Holopedium had significantly increased APA. These results indicate that N deposition can impair the efficiency of trophic interactions by accentuating stoichiometric food quality constraints in lake food webs.  相似文献   

8.
1. A comparative study of fatty acid (FA) profiles in particulate matter (seston) and the key grazer Daphnia was performed in six high Arctic ponds (79°N, Svalbard). The ponds were all small and shallow, but followed a strong gradient with respect to nutrient content and optical properties. 2. A distinct locality‐specific pattern was detected by principal component analysis of FA profiles, where samples from each locality clustered both with regard to seston and Daphnia. Linear discriminant analysis using nine sestonic fatty acids as discriminant functions gave on average a correct prediction of the Daphnia lake membership in 47% of cases, with very high predictability in some lakes but poor predictability in others. 3. No significant correlation was detected between FA and nutrient concentration or levels of dissolved organic carbon. The major determinant of FA profiles as judged from a redundancy analysis was the taxonomic composition of phytoplankton communities, notably the biomass of Chlorophyceae. 4. The FA profiles of Daphnia were for some FAs strongly enriched relative to the seston, while diluted for others. Among the polyunsaturated fatty acids (PUFAs), a pronounced magnification of eicosapentaenoic acid (EPA, 20 : 5 n‐3), and to some extent 18 : 3 n‐3 and 20 : 4 n‐6 was found, while docosahexaenoic acid (DHA, 22 : 6 n‐3) contributed in general less to FAs in Daphnia than in seston and was hardly detectable in Daphnia from most localities. 5. The overall content of PUFAs in Daphnia was consistently high, close to 40% of total FA in all investigated localities, despite major differences in seston PUFA content. Daphnia thus acts as a regulator with regard to overall PUFAs, reflecting its physiological constraints and relatively fixed demands for PUFAs in general. The distinct locality‐specific profiles in Daphnia strongly suggest a kind of FA‐fingerprint, but our data do not allow strict statements on the use of specific FAs as trophic markers.  相似文献   

9.
Because of major biochemical imbalances between plants and animals, ecological efficiency at this interface may have a major impact on overall energy flow in ecosystems. In order to study relationships between seston food quality and energy transfer between primary producers and herbivores, we conducted five microcosm experiments in Castle Lake, California, USA during the summer of 1996. We simultaneously performed life table experiments to determine the effects of highly unsaturated fatty acids (HUFA) on Daphnia rosea growth, reproduction and survival. The results of these experiments suggest strong energy limitation of D. rosea growth in Castle lake during the study. D. rosea production was coupled with primary production in Castle Lake and in the microcosm experiments. D. rosea production efficiencies, i.e., the ratios of D. rosea productivity to primary productivity, decreased towards the end of the summer. A food quality index based on phytoplankton species composition and seston carbon to phosphorus (C:P) ratio were good predictors of D. rosea production efficiencies. The predicted D. rosea production pattern based on phytoplankton composition and primary productivity matched the zooplankton biomass dynamics in Castle Lake during 1991. Life table experiments showed HUFA effects on D. rosea population growth rates, reproduction and survival in support of the HUFA limitation hypothesis.  相似文献   

10.
Lakes were surveyed to assess the potential patterns of latitudinalvariation in carbon:nitrogen:phosphorus (C:N:P) stoichiometryof lower food web components. Thirty-four lakes were surveyedat an arctic latitude (68°38'N, 149°38'W) and 10 lakesat a temperate latitude (46°13'N, 89°32'W) during 1997.The temperate data set was augmented with earlier survey resultsemploying similar methods. It was hypothesized that differencesin environmental variables across latitude would cause differencesin community C:N:P ratios, leading to differences in trophicinteractions. Physical measurements (light, temperature), sestonand zooplankton were collected from each lake. Seston and zooplanktonwere analyzed for C, N and P content, and zooplankton were countedand measured for biomass estimates. The degree of trophic interactionbetween seston and zooplankton was assessed by (i) measuringelemental imbalances between seston and zooplankton and (ii)calculating the potential recycling ratio by the zooplanktoncommunity available for seston. Seston C:nutrient, but not N:P,ratios were higher in temperate than arctic lakes. Conversely,arctic zooplankton had higher C:nutrient, but not N:P, ratiosthan zooplankton in temperate lakes. Elemental imbalances weregreater in temperate than in arctic lakes, but N:P stoichiometryof potential zooplankton recycling was nearly identical betweenthe two latitudes. Zooplankton community C:N:P ratios were notrelated to either latitude or seston C:N:P. In accordance withstoichiometric theory, relative abundances of calanoid copepodswere positively correlated with seston C:N in temperate lakes.Additionally, relative abundances of Daphnia were negativelycorrelated with seston C:N ratios in temperate and arctic lakes,and positively correlated with N:P ratios in the arctic. Ingeneral, these results suggest that seston and zooplankton communitystoichiometry differ across latitude, and these differenceshave the potential to affect trophic interactions.  相似文献   

11.
The data set obtained in 19 experiments aimed at studying the growth of Daphnia of the longispina group on natural seston of the Bugach water reservoir (Krasnoyarsk) was used to analyze the relationship between the parameters of somatic and generative growth of the studied animals and the amount and quality of food. Depending on the quality of the seston, two models of the development of Daphnia were proposed. It was demonstrated that, despite the existing positive correlation between somatic and generative growth, a noticeable fraction of the variations of the specific rate of generative production is determined by external factors of the environment, such as the relative content of N and α-linolenic acid (N: C and ALA: C) in seston.  相似文献   

12.
SUMMARY 1. Negative effects of zooplankton on the availability of phosphorus (P) for phytoplankton as a result of the retention of nutrients in zooplankton biomass and the sedimentation of exoskeletal remains after moulting, have been recently proposed. 2. In a mesocosm study, the relative importance of these mechanisms was tested for the freshwater cladoceran Daphnia hyalina×galeata. A total of 13 mesocosm bags was suspended in a mesotrophic German lake during summer 2000 and fertilised with inorganic P in order to obtain a total nitrogen to total P ratio closer to the Redfield ratio. D. hyalina×galeata was then added at a logarithmically scaled density gradient of up to 40 ind. L?1. Zooplankton densities, dissolved inorganic, particulate organic (seston <100 μm), as well as total nutrient concentrations were monitored. Additionally, nutrient concentrations of sediment water removed from the bottom of the mesocosm bags via a manual pump were determined. 3. Seston carbon (C), seston P and total P were significantly negatively correlated with Daphnia densities. The amount of particulate P (~5–6 μg P L?1) sequestered from the seston compartment by Daphnia corresponded roughly to the increase of zooplankton biomass (population growth). Soluble reactive phosphorous (SRP) was at all times high (~25–35 μg P L?1) and possibly unavailable to phytoplankton as a result of P adsorption to calcite during a calcite precipitation event (whiting). P concentrations determined in sediment water were generally <60 μg P m?2 and thus never exceeded 1% of the total amount of P bound in particulate matter of the overlying water column. 4. Seston C : P ratios followed a polynomial second‐order function: At Daphnia densities <40 ind. L?1 a positive linear relationship was evident, which is explained by the stronger reduction of P compared with C in seston, and transfer of seston P to zooplankton. Highest seston C : P ratios of ~300 : 1 were observed at Daphnia densities of ~30–50 ind. L?1, which is in agreement with proposed threshold values limiting Daphnia reproductive growth. At Daphnia densities >40–50 ind. L?1 C : P ratios were decreased because of the strong reduction of seston C at close to constantly low seston P‐values of ~3–4 μg P L?1. 5. At least for Daphnia, it may be concluded that – unlike population growth – the sedimentation of faecal pellets and carapaces after moulting seem negligible processes in pelagic phosphorus dynamics.  相似文献   

13.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

14.
Changes in the ecological stoichiometry of C, N, and P in the pelagic zone are reported from a whole-lake manipulation of the food web of Lake 227, an experimentally eutrophied lake at the Experimental Lakes Area, Canada. Addition of northern pike eliminated populations of planktivorous minnows by the third year (1995) after pike introduction, and in the fourth year after pike addition (1996), a massive increase in the abundance of the large-bodied cladoceran Daphnia pulicaria occurred. Accompanying this increase in Daphnia abundance, zooplankton community N:P declined, seston concentration and C:P ratio decreased, and dissolved N and P pools increased. During peak abundance, zooplankton biomass comprised a significant proportion of total epilimnetic phosphorus (greater than 30%). During the period of increased Daphnia abundance, concentrations of dissolved inorganic nitrogen (TIN) increased more strongly than dissolved phosphorus (TDP), and thus TIN:TDP ratios were elevated. Sedimentation data indicated that increased grazing led to greatly reduced residence times of C, N, and especially P in the water column during 1996. Finally, previously dominant N-fixing cyanobacteria were absent during 1996. Our results show that strong effects of food-web structure can occur in eutrophic lakes and that stoichiometric mechanisms play a potentially important role in generating these effects.  相似文献   

15.
We investigated the relationships between major nutrients (C, H, N, and P) and trace metals (Cu, Fe, and Mn) in seston samples from ten lake/lagoon systems in southern Brazil. The systems were characterized by a diverse set of limnological features, including surface areas from 10−1 to 102 km2, water color, a CDOM(440), from 1.4 to 12.9 m−1, and electrical conductivity from 50 to 100 000 μS cm−1. Seston concentrations also varied a great deal, 32-fold. The elemental (C: N, C: P, and N: P) and C: Chl-a ratios in the seston samples indicated, however, common features; i.e., most of the lakes were N-and/or P-limited, and the seston organic fraction was composed of nonvascular plants (e.g., phytoplankton). Our intersystem comparison revealed that the relative content of organic matter in seston and seston concentrations in lake water tended to correlate positively and negatively, respectively, with trace metal concentrations across the seston samples. Possible influences of elemental and C: Chl-a ratios on the association of metals with seston matrices, although theoretically important, were only partially evidenced here; positive correlations were found between C: N and also Org-H: N ratios with trace metal concentrations. We speculate that such results could be circumstantial, as the nature of the seston matrices appeared to be very similar among them. This hypothesis should thus be the theme of further research. In short, our findings suggest that C: N and Org-H: N ratios as well as the relative content of major nutrients in seston and seston concentrations can be importantly related to trace metal concentrations in seston samples. In discussing the results, however, we consider that metal-seston relationships depend on a variety of physical, chemical, and biological factors and/or variables other than those measured in this study, which could also contribute for defining and explaining variations in metal-seston concentrations in lake ecosystems.  相似文献   

16.
17.
In an enclosure study in Schöhsee, a small mesotrophic lake in Northern Germany, the impact of copepods and daphniids on the seston community was studied. In general, these two guilds differ in their feeding behaviour. Copepods actively select their food, with a preference for larger particles, whereas most cladocerans are unselective filter-feeders. In this study we investigate how the impact of the two different grazers affects zooplankton growth. We combine results obtained in the laboratory with results measured in situ in the enclosures. Copepods and cladocerans were cultured on seston from enclosures that were inhabited by density gradients of copepods or daphniids. We observed that Daphnia grew faster on seston that was pre-handled by copepods than on seston that was pre-handled by daphniids, and that somatic growth decreased with increasing densities of daphniids in the enclosures. In contrast, we observed no differences in development rates for copepods grown on the different media. The population growth rates of Daphnia in the Daphnia treatments were determined in the enclosures. Growth differences in both somatic- and population growth of Daphnia were correlated to food quality aspects of the seston. In the laboratory we found that Daphnia growth was correlated with several fatty acids. The strongest regression was with the concentration of 20:43 (r 2= 0.37). This particular fatty acid also showed the highest correlation with growth after normalisation of the fatty acids to the carbon content of the enclosures (r 2= 0.33). On the other hand, in the enclosure the population growth correlated most to the particulate nitrogen content (r 2= 0.78) and only to the N:C ratio, when normalised to carbon (r 2= 0.51).  相似文献   

18.
Seasonal changes in the biochemistry of lake seston   总被引:3,自引:0,他引:3  
1. The quantity of seston was measured and the elemental carbon, nitrogen and phosphorus (C, N, P) and biochemical composition (carbohydrate, protein, lipid) of the < 53 μm size fraction in three temperate lakes during one year was analysed. The lakes differed in nutrient concentration and were characterized as oligotrophic, mesotrophic and eutrophic. Linear regression analyses defined associations between seston composition and either lake trophic status, depth or season. 2. The concentration of particulate organic seston was greatest during spring and autumn and lowest during the clear water period in early summer. Seasonal patterns in seston elemental and biochemical percentage composition (quality) were observed to be independent of differences in seston quantity. 3. Concentrations of seston C, N and P were high in most cases in the spring and autumn and low in summer. Concentrations of P were particularly high during late summer and early autumn in the metalimnion, perhaps because of recovery of P from anaerobic sediments and hypolimnetic waters. Because seston C and N did not increase as markedly as P, C : P and N : P ratios both declined in the autumn. Primary production was thought to be co-limited by N and P in all three of these lakes; however, the data suggested that N might be more important as a major limiting nutrient in the eutrophic lake as the metalimnion increased in depth in late summer and autumn. 4. Concentrations of protein, carbohydrate, polar lipid and triglyceride generally increased with lake type as expected (greatest in the eutrophic lake), but showed no relationship with water depth. As the year progressed, no significant changes were measured in protein and carbohydrate concentrations; however, the concentration of polar lipid decreased and triglyceride increased significantly with time of year. 5. The biochemical composition of seston varied during the year and among lakes; for example, in Lake Waynewood the proportion of protein composing the seston (percentage protein by weight) varied from < 10% to > 40%. No statistically significant patterns in the percentage protein or carbohydrate were found. However, the proportion of seston comprised of triglyceride decreased with lake type and increased during the year; whereas the proportion of seston as polar lipid increased with lake type and decreased during the year. Triglyceride comprised most of the lipid. Both protein : lipid and protein : carbohydrate ratios tended to be greatest in summer and lowest in the spring and autumn. 6. Relationships between samples and biochemical composition analysed by Canonical Correspondence Analysis (Canoco) indicated similar patterns in seasonal changes in seston biochemistry for the three lakes, with samples separated primarily by vectors for lake type (oligotrophic to eutrophic) and the percentage polar lipid (proportion of total lipid) and secondarily by vectors for date and water depth (epilimnion or metalimnion). 7. These seasonal biochemical changes in the seston food base were compared with biochemical changes known to occur in algae grown under N-or P-limited conditions in the laboratory, and the resultant quality of this algal food for suspension-feeding consumers (zooplankton). It was concluded that zooplankton were likely to be physiologically challenged by these distinct seasonal shifts in the quality of lake seston.  相似文献   

19.
Mercury is a contaminant of concern in polar regions due to long‐range atmospheric transport of this metal from southern latitudes followed by intense deposition on snow. We surveyed zooplankton in 16 lakes and ponds in the Canadian Arctic Archipelago (74–76°N) to determine methylmercury (MeHg) content and the role of environmental characteristics and taxonomic composition on accumulation processes. Zooplankton communities containing Daphnia (mainly D. middendorffiana) had on average five times the MeHg content of copepod‐dominated communities. The percent biomass of Daphnia best explained MeHg variation in bulk zooplankton compared with water chemistry and morphometric variables. Water‐column concentrations of MeHg were low at most study sites (mainly ≤0.07 ng L−1), and Daphnia strongly bioaccumulated mercury through species‐specific processes. As we observed Daphnia in more productive water bodies (i.e., ponds, a eutrophied lake), we then tested the role of productivity in determining the distribution of this keystone herbivore using a broad‐scale literature dataset of 47 High Arctic lakes (65–77°N). Daphnia density was positively related to the amount of organic carbon in the water column in both dissolved and particulate fractions [dissolved organic carbon (DOC) partial , P < 0.001; particulate organic carbon (POC) partial , P=0.032]. The strong influence of DOC suggests that bacterial production is an important energy source for Arctic Daphnia. Our findings indicate that productivity influences the MeHg content of zooplankton communities through its control of species composition; specifically, low productivity limits the presence of mercury‐rich Daphnia in many copepod‐dominated lakes of the High Arctic. Aquatic productivity is expected to increase with climate warming, and we present a conceptual model that predicts how environmental drivers could extend the distribution of Daphnia in lakes and alter the movement of mercury in food webs of the Canadian High Arctic.  相似文献   

20.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号