首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1. Growth and reproduction of Daphnia fed lake seston were measured in two categories of meso‐ to eutrophic lakes differing with respect to terrestrial organic matter influence (humic and clear water lakes). The content of highly unsaturated fatty acids (HUFA), P and N, as well as the taxonomical composition of seston were analysed. 2. Seston HUFA and C : P ratios were similar between lake categories, whereas C : N ratios were lower in the clear water lakes in both spring and summer. Despite the similarity in HUFA and P content of seston, Daphnia growth rate, clutch size and the proportion of gravid females were, respectively, about 1.5, 3 and 6 times higher in the clear water lakes. 3. Differences in growth and reproduction were related to a combination of higher N content and good fatty acid quality of the seston in the clear water lakes. Relatively high biomass of edible algae, such as Rhodomonas sp. and Cryptomonas sp., in the clear water lakes, and differences in water pH likely contributed to the observed differences in Daphnia growth and reproduction between lake categories. Additionally, it is possible that Daphnia was energy limited in the humic lakes despite high particulate organic carbon (POC) concentrations, as the contribution of non‐algal and detrital C to the POC pool was high. 4. Our results suggest that dietary HUFA content has the potential to improve herbivore growth and reproduction if N and P are not limiting. N merits more attention in studies of zooplankton nutrition.  相似文献   

2.
J. Grey  R. I. Jones  D. Sleep 《Oecologia》2000,123(2):232-240
Carbon stable isotope analysis was carried out on zooplankton from 24 United Kingdom lakes to examine the hypothesis that zooplankton dependence on allochthonous sources of organic carbon declines with increasing lake trophy. Stable isotope analysis was also carried out on particulate and dissolved organic matter (POM and DOM) and, in 11 of the lakes, of phytoplankton isolates. In 21 of the 24 lakes, the zooplankton were depleted in 13C relative to bulk POM, consistent with previous reports. δ13C for POM showed relatively little variation between lakes compared to high variation in values for DOM and phytoplankton. δ13C values for phytoplankton and POM converged with increasing lake trophy, consistent with the expected greater contribution of autochthonous production to the total organic matter pool in eutrophic lakes. The difference between δ13C for zooplankton and that for POM was also greatest in oligotrophic lakes and reduced in mesotrophic lakes, in accordance with the hypothesis that increasing lake trophic state leads to greater dependence of zooplankton on phytoplankton production. However, the difference increased again in hypertrophic lakes, where higher δ13C values for POM may have been due to greater inputs of 13C-enriched organic matter from the littoral zone. The very wide variation in phytoplankton δ13C between lakes of all trophic categories made it difficult to detect robust patterns in the variation in δ13C for zooplankton. Received: 2 November 1998 / Accepted: 3 December 1999  相似文献   

3.
4.
1. We used first‐order kinetic parameters of biological oxygen demand (BOD), the constant of aerobic decomposition (k) and the asymptotic value of BOD (BODult), to characterise the lability of organic carbon pools in six lakes of different trophic state: L. Naroch, L. Miastro and L. Batorino (Belarus), L. Kinneret (Israel), L. Ladoga (Russia) and L. Mendota (U.S.A.). The relative contributions of labile and refractory organic carbon fractions to the pool of total organic carbon (TOC) in these lakes were quantified. We also determined the amounts of labile organic carbon within the dissolved and particulate TOC pools in the three Belarus lakes. 2. Mean annual chlorophyll concentrations (used as a proxy for lake trophic state) ranged from 2.3 to 50.6 μg L−1, labile organic carbon (OCL = 0.3BODult) from 0.75 to 2.95 mg C L−1 and k from 0.044 to 0.14 day−1. 3. Our data showed that there were greater concentrations of OCL but lower k values in more productive lakes. 4. In all cases, the DOC fraction dominated the TOC pool. OCL was a minor component of the TOC pool averaging about 20%, irrespective of lake trophic state. 5. In all the lakes, most (c. 85%) of the DOC pool was refractory, corresponding with published data based on measurements of bacterial production and DOC depletion. In contrast, a larger fraction (27–55%) of the particulate organic carbon (POC) pool was labile. The relative amount of POC in the TOC pool tended to increase with increasing lake productivity. 6. Long‐term BOD incubations can be valuable in quantifying the rates of breakdown of the combined particulate and dissolved organic carbon pools and in characterising the relative proportions of the labile and recalcitrant fractions of these pools. If verified from a larger number of lakes our results could have important general implications.  相似文献   

5.
Terrestrial organic matter (TOM) plays a key role in mercury (Hg) dynamics between watersheds and lakes. In this study we attempts to determine the role of TOM source and quality and not only quantity, in the fate and transport of total Hg (T-Hg) to boreal lakes. Integrating the watershed complexity is a daunting task. Within the scope of this project, we characterized this organic matter at a molecular level in order to determine Hg transfer conditions to the sediments. We sampled ten lakes in the Quebec boreal forest. In each lake, we took a sediment core at the deepest point in addition to analyzing T-Hg and a set of terrigenous biomarkers in recent sediments. Our results show no relationship between TOM quantity and T-Hg concentration in lake sediments. However, [T-Hg] variation is well explained by the increase of 3,5Bd/V ratios (R2?=?0.84; p?<?0.0002) and the decrease of C/V ratios (R2?=?0.5; p?<?0.0227). Our study shows that TOM source and quality are determinant for Hg loadings in lake sediments. More precisely, increasing TOM derived from humified soil horizons explains most of Hg level variation within sediments.  相似文献   

6.
A whole-lake manipulation of food-web structure (introduction of a top predator, northern pike, to a minnow-dominated lake) was performed in a Canadian Shield lake (L110) to examine the stoichiometric consequences of changes in planktonic community structure generated by altered food-web structure. Minnow abundance, zooplankton biomass and community composition, microconsumer abundance, and concentration and carbon–phosphorus (C:P) ratio of suspended particulate matter were monitored in L110 and unmanipulated L240 before (1992) and after (1993–95) pike introduction. Algal biomass in L110 determined from microscopic examination for postmanipulation and premanipulation periods was also compared with dynamics in a suite of unmanipulated reference lakes from long-term monitoring records. Pike were added in spring in 1993 and 1994 in sufficient quantity to raise pike biomass to levels of around 22 kg ha 1 by 1994. Minnow populations in L110 responded dramatically, decreasing to levels 30% (1993), 10% (1994), and less than 1% (1995) of premanipulation values. However, most components lower in the food web did not respond in a manner consistent with predictions of existing food-web theory, such as the idea of cascading trophic interactions (CTI). While Daphnia biomass increased in L110 in the first year following manipulation, consistent with CTI, this effect was temporary and Daphnia collapsed in 1995, the year of lowest minnow abundance. Total zooplankton biomass in both lakes declined during the study period and, contrary to CTI, this decline appeared somewhat stronger in L110 than in L240. Dominant microconsumers (heterotrophic microflagellates) did not differ among years in either lake and did not appear to respond to food-web manipulation. At the bottom of the food web, no changes in bacterial biomass occurred in either lake. However, total concentrations of particulate matter appeared to increase in L110 after manipulation (contrary to expectations based on the theory of CTI) while algal biomass did not change in the manipulated lake relative to reference systems. Finally, particulate C:P increased in both L110 and L240 during the study period. The lack of strong response of Daphnia, the lack of response of the microbial food web, decreases in zooplankton biomass and increases in particulate biomass following reduction of minnow populations after piscivore introduction are at odds with expectations from existing food-web theory, such as the idea of CTI as currently formulated. However, the extremely high C:P ratios in particulate matter at the base of the food webs in these lakes, the coincidence of zooplankton declines and increases in particulate C:P ratios, and the results of small-scale mesocosm food-quality experiments are consistent with a hypothesis of a stoichiometric constraint operating on food-web dynamics in this and similar ecosystems. Received 22 April 1997; accepted 8 July 1997.  相似文献   

7.
1. Numerous studies have quantified the relative contribution of terrestrial‐ and phytoplankton‐derived carbon sources to zooplankton secondary production in lakes. However, few investigated the pathways along which allochthonous and autochthonous carbon (C) was actually conveyed to consumers. 2. We suggest that the combined use of fatty acid and stable isotope biomarkers could solve this issue. We conducted a field study on two oligotrophic lakes, in which primary production increased significantly between 2002 and 2004. We used modelling to estimate the contribution of terrestrial‐ and phytoplankton‐derived C to particulate organic C (POC) and zooplankton production from their δ13C values in 2002 and 2004. 3. According to the isotope model, phytoplankton‐derived C accounted for a major part of the POC pool in both lakes and supported more Daphnia sp. production in 2004 than in 2002. Fatty acid data revealed that increased contribution of algal‐C to Daphnia production, although common between both lakes, was achieved through C pathways that were different. In one lake, Daphnia grazed more intensively on phytoplankton, whereas in the other there was greater grazing on bacteria. In the latter case, the increased primary production resulted in greater release of algal‐derived dissolved organic C (DOC), which may have supported extra bacterial and eventually Daphnia, production. 4. This is the first study illustrating that the combination of fatty acid and stable isotope biomarkers could further our understanding of the factors controlling the relative magnitude of food webs pathways conveying organic matter to zooplankton.  相似文献   

8.
9.
Mercury is a contaminant of concern in polar regions due to long‐range atmospheric transport of this metal from southern latitudes followed by intense deposition on snow. We surveyed zooplankton in 16 lakes and ponds in the Canadian Arctic Archipelago (74–76°N) to determine methylmercury (MeHg) content and the role of environmental characteristics and taxonomic composition on accumulation processes. Zooplankton communities containing Daphnia (mainly D. middendorffiana) had on average five times the MeHg content of copepod‐dominated communities. The percent biomass of Daphnia best explained MeHg variation in bulk zooplankton compared with water chemistry and morphometric variables. Water‐column concentrations of MeHg were low at most study sites (mainly ≤0.07 ng L−1), and Daphnia strongly bioaccumulated mercury through species‐specific processes. As we observed Daphnia in more productive water bodies (i.e., ponds, a eutrophied lake), we then tested the role of productivity in determining the distribution of this keystone herbivore using a broad‐scale literature dataset of 47 High Arctic lakes (65–77°N). Daphnia density was positively related to the amount of organic carbon in the water column in both dissolved and particulate fractions [dissolved organic carbon (DOC) partial , P < 0.001; particulate organic carbon (POC) partial , P=0.032]. The strong influence of DOC suggests that bacterial production is an important energy source for Arctic Daphnia. Our findings indicate that productivity influences the MeHg content of zooplankton communities through its control of species composition; specifically, low productivity limits the presence of mercury‐rich Daphnia in many copepod‐dominated lakes of the High Arctic. Aquatic productivity is expected to increase with climate warming, and we present a conceptual model that predicts how environmental drivers could extend the distribution of Daphnia in lakes and alter the movement of mercury in food webs of the Canadian High Arctic.  相似文献   

10.
Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh 13C-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter.  相似文献   

11.
While the importance of terrestrial linkages to aquatic ecosystems is well appreciated, the degree of terrestrial support of aquatic consumers remains debated. Estimates of terrestrial contributions to lake zooplankton have omitted a key food source, phytoplankton produced below the mixed layer. We used carbon and nitrogen stable isotope data from 25 Pacific Northwest lakes to assess the relative importance of particulate organic matter (POM) from the mixed layer, below the mixed layer and terrestrial detritus to zooplankton. Zooplankton and deep POM were depleted in 13C relative to mixed layer POM in lakes that can support deep primary production. A Bayesian stable isotope mixing model estimated that terrestrial detritus contributed <5% to zooplankton production, and confirms the role of lake optical and thermal properties; deep POM accounted for up to 80% of zooplankton production in the clearest lakes. These results suggest terrestrial support of lake zooplankton production is trivial.  相似文献   

12.
The natural abundance of stable isotopes (δ13C and δ1315N) was determined for components of the pelagic food web in Loch Ness, a deep oligotrophic lake in northern Scotland, and compared with values from the inflow rivers and the catchment vegetation. Phytoplankton δ13C was low compared to values reported from other lakes, possibly reflecting a high use of 13C-depleted carbon dioxide from respired organic matter before further isotopic fractionation during photosynthesis. Phytoplankton δ13C was appreciably lower than that of dissolved and particulate organic matter (DOM and POM) in the loch. The DOM and POM were evidently overwhelmingly of allochthonous origin and ultimately derived from terrestrial plant detritus. The distinctive δ13C values for phytoplankton and detritus in the loch allowed the use of food sources by grazing crustacean zooplankton to be assessed, and the contributions of phytoplankton carbon and detrital carbon to zooplankton total body carbon appeared to be about equal. Comparison of δ13C and δ15N values for zooplankton and fish allowed assessment of trophic structure in the loch. The very high dependence of the pelagic food web in Loch Ness on allochthonous organic matter inputs from the catchment may be exceptional in a large lake, but has important implications for our understanding of lake ecosystem processes as well as for lake management.  相似文献   

13.
Global environmental change has altered the nitrogen (N) cycle and enhanced terrestrial dissolved organic carbon (DOC) loadings to northern boreal lakes. However, it is still unclear how enhanced N availability affects pelagic food web efficiency (FWE) and crustacean zooplankton growth in N limited boreal lakes. Here, we performed in situ mesocosm experiments in six unproductive boreal Swedish lakes, paired across a DOC gradient, with one lake in each pair fertilized with N (2011: reference year; 2012, 2013: impact years). We assessed how zooplankton growth and FWE were affected by changes in pelagic energy mobilization (PEM), food chain length (phytoplankton versus bacterial production based food chain, i.e. PP:BP), and food quality (seston stoichiometry) in response to N fertilization. Although PP, PEM and PP:BP increased in low and medium DOC lakes after N fertilization, consumer growth and FWE were reduced, especially at low DOC—potentially due to reduced phytoplankton food quality [increased C: phosphorus (P); N:P]. At high DOC, N fertilization caused modest increases in PP and PEM, with marginal changes in PP:BP and phytoplankton food quality, which, combined, led to a slight increase in zooplankton growth and FWE. Consequently, at low DOC (<12 mg L?1), increased N availability lowers FWE due to mismatches in food quality demand and supply, whereas at high DOC this mismatch does not occur, and zooplankton production and FWE may increase. We conclude that the lake DOC level is critical for predicting the effects of enhanced inorganic N availability on pelagic productivity in boreal lakes.  相似文献   

14.
15.
In spite of resource limitation, five abundant species of herbivorous metazoan zooplankton in a humic lake exhibited extensive niche overlap both with regard to seasonal and spatial occurrence, time of reproductive maxima, juvenile release and food choice. Their coexistence could not be explained by modifying predation, environmental oscillations or recolonization.Laboratory bottle experiments indicated only weak interspecific interactions between the three tested species at low food levels, but negative interactions were induced at elevated food levels. Bosmina appeared as competitively inferior during enrichment with cultured algae, but as the superior species during starvation. At low nutrient levels, all species coexisted for several generations with low reproduction, in accordance with the lake situation. It was concluded that the observed niche overlaps would be promoted if; 1) Intraspecific competition is more important than interspecific competition. 2) All species are co-adapted to low nutrient availability, food is quantitatively in surplus, but qualitatively deficient (mainly recycled detritus). During such conditions, no species would be capable of obtaining a population increase until extinction of the other species. This situation may be typical of oligotrophic humic lakes, and of other localities with low predation pressure and high inputs of allochthonous particulate carbon.  相似文献   

16.
We collected zooplankton samples from 4×4 m enclosures located in two acidified lakes (pH<5) in Nova Scotia from June to August 1996. One lake had mean dissolved organic carbon concentrations greater than 10 mg l–1 (brown water), while the other had values between 2 and 4 mg l–1. In each lake, three enclosures were open to ambient light, while three were covered by Mylar® sheets which removed UVB and UVC wavelengths. Weekly sampling was done at all sites in July and near the end of August. Individuals were identified and the total community weighed. Analysis of results using both t-test and canonical analysis revealed small differences in populations between open and UVB covered clearwater sites in early July, but not later. There was no response of midsummer zooplankton communities in the humic lake which had a 95% extinction depth of 3 cm. In the clearwater lake (95% UVB extinction at 50 cm), the effect of radiation exclusion was relatively weak compared to most other published studies, but nevertheless statistically significant.  相似文献   

17.
Within-lake variability in carbon and nitrogen stable isotope signatures   总被引:3,自引:0,他引:3  
1. We assessed spatial and temporal variation in carbon and nitrogen isotopic signatures in different compartments of a single lake ecosystem. Stable isotope analyses were made on samples of particulate organic matter (POM), zooplankton, periphyton, macrophytes, macroinvertebrates and fish collected from several locations throughout the ice‐free period. 2. No spatial variation in δ13C or δ15N values was found for pelagic samples of POM and zooplankton. However, pelagic δ15N signatures increased steadily through the summer resulting in an almost 6‰ average increase in POM and zooplankton. A concurrent decrease in epilimnetic nitrate concentrations suggested that the increase in δ15N of POM and zooplankton could have resulted from a progressive 15N‐enrichment of the available inorganic nitrogen pool as the size of this pool was reduced. 3. Significant spatial variation in isotopic ratios was observed within littoral and profundal communities. Some spatial differences were likely related to lake‐specific characteristics, such as a major inlet and a small harbour area and some were interconnected with temporal events. 4. Marked differences between spring and autumn δ15N and δ13C values of fish at one site probably reflected a spring spawning immigration from a larger downstream lake and also indicated limited dispersal of these immigrants. 5. Our results indicate that restricted sampling of ecosystem components from lakes may provide misleading single values for the isotope end members needed for quantitative uses of stable isotopes in mixing models and for estimating trophic position. Hence we strongly advise that studies of individual lakes, or multiple lake comparisons, that utilise stable isotope analyses should pay more attention to potential within lake spatial and temporal variability of isotope ratios.  相似文献   

18.
An important environmental factor determining both phytoplankton and zooplankton community composition is lake depth and thermal stratification. However, there is little information on how the interaction between zooplankton grazers and their phytoplankton food changes along an environmental gradient of lake depth. We contrasted resource availability for daphniid zooplankton populations living in two shallow, unstratified lakes and in two deep, stratified lakes using a novel growth bioassay. Stratified lakes had consistently lower resource richness than shallow unstratified lakes. To test whether resources were important in explaining differences in daphniid composition of shallow and deep lakes, we performed reciprocal transplant experiments. We raised daphniids typical of shallow (Ceriodaphnia reticulata) and deep (Daphnia dentifera) lakes in the resources from replicate shallow and deep lakes and monitored survival and reproduction. The two species exhibited a performance trade-off, measured by life table r and R 0, across a gradient in natural resource richness. D. dentifera had higher relative fitness than C. reticulata when raised in the poorest resource environment from a deep lake. However, under richer resource conditions typical of shallow lakes, C. reticulata outperformed D. dentifera. We further created a gradient in natural resource quantity (by dilution) to test whether this trade-off in species relative fitness involved aspects of resource quality. No trade-off in species performance was evident across the dilution gradient, indicating that resource quality was important to the trade-off. We conclude that shifts in daphniid species composition along a gradient of lake depth involve an adaptive trade-off in ability to exploit rich versus poor resource quality. Received: 11 May 1998 / Accepted: 15 January 1999  相似文献   

19.
Here, we present data that for the first time suggests that the effects of atmospheric nitrogen (N) deposition on nutrient limitation extend into the food web. We used a novel and sensitive assay for an enzyme that is over‐expressed in animals growing under dietary phosphorus (P) deficiency (alkaline phosphatase activity, APA) to assess the nutritional status of major crustacean zooplankton taxa in lakes across a gradient of atmospheric N deposition in Norway. Lakes receiving high N deposition had suspended organic matter (seston) with significantly elevated carbon:P and N:P ratios, indicative of amplified phytoplankton P limitation. This P limitation appeared to be transferred up the food chain, as the cosmopolitan seston‐feeding zooplankton taxa Daphnia and Holopedium had significantly increased APA. These results indicate that N deposition can impair the efficiency of trophic interactions by accentuating stoichiometric food quality constraints in lake food webs.  相似文献   

20.
1. The stable carbon isotope ratio δ13C is a useful tracer of energy flow in lake food webs, and the zooplankton signature is commonly used to establish a baseline for the pelagic habitat. However, sources of temporal variability in the δ13C of different zooplankton taxa are rarely considered. 2. Here, we investigate to what extent temporal variation in the δ13C of particulate organic matter (POM) (<41 μm) and the C : N of zooplankton can explain the temporal variability in δ13C of freshwater zooplankton. We compare temporal patterns of δ13C and C : N for Daphnia, Hesperodiaptomus franciscanus and Leptodiaptomus tyrelli over a 6‐month period at four sites in two oligotrophic lakes. 3. In all three taxa, seasonal variation in zooplankton C : N explained more of the variation in zooplankton δ13C than did the δ13C of POM. This suggests that variation in the lipid content of zooplankton can strongly influence temporal variation of δ13C in zooplankton. 4. Using these data, we evaluate procedures that estimate the δ13C of only the non‐lipid component of zooplankton. If zooplankton lipids are primarily dietary in origin, than extracting lipids or ‘normalising’δ13C based on C : N will exclude a major dietary source, and therefore may be inappropriate. 5. We conclude that temporal variation in body composition (C : N) of zooplankton can significantly influence the temporal variation of zooplankton δ13C signatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号