首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Plant genomes encode a large number of proteins that potentially function as immune receptors in the defense against pathogen invasion. As a well‐characterized receptor kinase consisting of 23 tandem leucine‐rich repeats, a transmembrane domain and a serine/threonine kinase, the rice (Oryza sativa) protein XA21 confers resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae (Xoo) races that cause bacterial blight disease. We report here that XA21 binding protein 25 (XB25) belongs to the plant‐specific ankyrin‐repeat (PANK) family. XB25 physically interacts, in vitro, with the transmembrane domain of XA21 through its N–terminal binding to transmembrane and positively charged domain (BTMP) repeats. In addition, XB25 associates with XA21 in planta. The downregulation of Xb25 results in reduced levels of XA21 and compromised XA21‐mediated disease resistance at the adult stage. Moreover, the accumulation of XB25 is induced by Xoo infection. Taken together, these results indicate that XB25 is required for maintaining XA21‐mediated disease resistance.  相似文献   

2.
Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L.) XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeast two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM) and kinase domain as bait, identified a protein phosphatase 2C (PP2C), called XA21 binding protein 15 (XB15). The interaction of XA21 and XB15 was confirmed in vitro and in vivo by glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays, respectively. XB15 fusion proteins purified from Escherichia coli and from transgenic rice carry PP2C activity. Autophosphorylated XA21 can be dephosphorylated by XB15 in a temporal- and dosage-dependent manner. A serine residue in the XA21 JM domain is required for XB15 binding. Xb15 mutants display a severe cell death phenotype, induction of pathogenesis-related genes, and enhanced XA21-mediated resistance. Overexpression of Xb15 in an XA21 rice line compromises resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. These results demonstrate that Xb15 encodes a PP2C that negatively regulates the XA21-mediated innate immune response.  相似文献   

3.
水稻抗白叶枯病基因Xa21的研究进展   总被引:6,自引:0,他引:6  
白辉  李莉云  刘国振 《遗传》2006,28(6):745-753
Xa21是最早克隆的水稻抗病基因,作为类受体激酶类广谱抗病基因它受到广泛的关注。转基因Xa21材料,很可能成为世界上第一个被批准进行大田释放的水稻转基因材料。本文在简要回顾Xa21的发现、定位和克隆过程之后,总结了目前Xa21基因的抗病作用机理和育种应用研究现状,包括XA21蛋白质激酶的生化特性、AvrXa21的鉴别、Xa21介导的抗病途径、抗病机理等,并对今后的研究进行了展望。  相似文献   

4.
The rice gene Xa21 confers resistance against Xanthomonas oryzae pv. oryzae (Xoo). Xa21 encodes a receptor-like kinase (XA21). We demonstrate that XA21 autophosphorylates residues Ser686, Thr688 and Ser689 in vitro. Substitution of these residues with alanines did not affect the autophosphorylation function of this kinase, but specifically destabilized the resistance protein in vitro and in vivo. Plants carrying these same substitutions in XA21 were compromised in their resistance to the normally avirulent Xoo Philippine race 6. Additionally, we show that wild-type XA21 and the kinase-dead mutant with the invariable Lys736 residue mutated to glutamic acid were also proteolytically degraded in protein extracts. Finally, we show a correlation between the in vitro degradation and in vivo instability of the proteins. We propose that autophosphorylation of Ser686, Thr688 and Ser689 functions to stabilize XA21 against the developmentally controlled proteolytic activity.  相似文献   

5.
Lee DH  Choi HW  Hwang BK 《Plant physiology》2011,156(4):2011-2025
Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.  相似文献   

6.
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.  相似文献   

7.
Wu L  Goh ML  Sreekala C  Yin Z 《Plant physiology》2008,148(3):1497-1509
The rice (Oryza sativa) gene Xa27 confers resistance to Xanthomonas oryzae pv oryzae, the causal agent of bacterial blight disease in rice. Sequence analysis of the deduced XA27 protein provides little or no clue to its mode of action, except that a signal-anchor-like sequence is predicted at the amino (N)-terminal region of XA27. As part of an effort to characterize the biochemical function of XA27, we decided to determine its subcellular localization. Initial studies showed that a functional XA27-green fluorescent protein fusion protein accumulated in vascular elements, the host sites where the bacterial blight pathogens multiply. The localization of XA27-green fluorescent protein to the apoplast was verified by detection of the protein on cell walls of leaf sheath and root cells after plasmolysis. Similarly, XA27-FLAG localizes to xylem vessels and cell walls of xylem parenchyma cells, revealed by immunogold electron microscopy. XA27-FLAG could be secreted from electron-dense vesicles in cytoplasm to the apoplast via exocytosis. The signal-anchor-like sequence has an N-terminal positively charged region including a triple arginine motif followed by a hydrophobic region. Deletion of the hydrophobic region or substitution of the triple arginine motif with glycine or lysine residues abolished the localization of the mutated proteins to the cell wall and impaired the plant's resistance to X. oryzae pv oryzae. These results indicate that XA27 depends on the N-terminal signal-anchor-like sequence to localize to the apoplast and that this localization is important for resistance to X. oryzae pv oryzae.  相似文献   

8.
The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH.  相似文献   

9.
The rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance.  相似文献   

10.
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, one of the most serious diseases in rice. X. oryzae pv. oryzae Philippine race 6 (PR6) strains are unable to establish infection in rice lines expressing the resistance gene Xa21. Although the pathogen-associated molecule that triggers the Xa21-mediated defense response (AvrXa21) is unknown, six rax (required for AvrXa21 activity) genes encoding proteins involved in sulfur metabolism and Type I secretion were recently identified. Here, we report on the identification of two additional rax genes, raxR and raxH, which encode a response regulator and a histidine protein kinase of two-component regulatory systems, respectively. Null mutants of PR6 strain PXO99 that are impaired in either raxR, raxH, or both cause lesions significantly longer and grow to significantly higher levels than does the wild-type strain in Xa21-rice leaves. Both raxR and raxH mutants are complemented to wild-type levels of AvrXa21 activity by introduction of expression vectors carrying raxR and raxH, respectively. These null mutants do not affect AvrXa7 and AvrXa10 activities, as observed in inoculation experiments with Xa7- and Xa10-rice lines. Western blot and raxR/gfp promoter-reporter analyses confirmed RaxR expression in X. oryzae pv. oryzae. The results of promoter-reporter studies also suggest that the previously identified raxSTAB operon is a target for RaxH/RaxR regulation. Characterization of the RaxH/RaxR system provides new opportunities for understanding the specificity of the X. oryzae pv. oryzae-Xa21 interaction and may contribute to the identification of AvrXa21.  相似文献   

11.
白叶枯病和稻瘟病是最主要的水稻病害。Xa21是水稻白叶枯病抗性基因,Pi-d2是稻瘟病抗性基因,二者都编码类受体激酶蛋白质。在前期研究中,曾系统地研究了细菌中表达XA21激酶蛋白质的生化活性。在此实验中利用真核表达系统酿酒酵母对Xa21和Pi-d2编码的蛋白激酶进行了表达、纯化及自我磷酸化活性分析,为进一步的生化分析、蛋白质-蛋白质相互作用研究、底物筛选等奠定了基础。  相似文献   

12.
Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase   总被引:25,自引:0,他引:25  
The cyclin-dependent kinase inhibitor p21Cip1 has important roles in the control of cell proliferation, differentiation, senescence, and apoptosis. It has been observed that p21 is a highly unstable protein, but the mechanisms of its degradation remained unknown. We show here that p21 is a good substrate for an SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase complex, which contains the F-box protein Skp2 (S phase kinase-associated protein 2) and the accessory protein Cks1 (cyclin kinase subunit 1). A similar ubiquitin ligase complex has been previously shown to be involved in the degradation of a related cyclin-dependent kinase inhibitor, p27Kip1. The levels of Skp2 oscillate in the cell cycle, reaching a maximum in S phase. The ubiquitylation of p21 in vitro required the supplementation of all components of the SCF complex as well as of Cks1 and Cdk2-cyclin E. The protein kinase Cdk2-cyclin E acts both by the phosphorylation of p21 on Ser-130 and by the formation of a complex with p21, which is required for its presentation to the ubiquitin ligase. As opposed to the case of p27, the phosphorylation of p21 stimulates its ubiquitylation but is not absolutely required for this process. Levels of p21 are higher in Skp2-/- mouse embryo fibroblasts than in wild-type fibroblasts in the S phase, and the rates of the degradation of p21 are slower in cells that lack Skp2. It is suggested that SCFSkp2 participates in the degradation of p21 in the S phase.  相似文献   

13.
An 8.1-kb DNA fragment from Xanthomonas oryzae pv. oryzae that contains six open reading frames (ORF) was cloned. The ORF encodes proteins similar to flagellar proteins FlhB, FlhA, FlhF, and FliA, plus two proteins of unknown function, ORF234 and ORF319, from Bacillus subtilis and other organisms. These ORF have a similar genomic organization to those of their homologs in other bacteria. TheflhF gene product, FlhF, has a GTP-binding motif conserved in its homologs. Unlike its homologs, however, X. oryzae pv. oryzae FlhF carries two transmembrane-like domains. Insertional mutations of theflhF gene with the omega cassette or the kanamycin resistance gene significantly retard but do not abolish the motility of the bacteria. Complementation of the mutants with the wild-type flhF gene restored the motility. The X. oryzae pv. oryzae FlhF interacts with itself; the disease resistance gene product XA21; and a protein homologous to the Pill protein of Pseudomonas aeruginosa, XooPilL, in the yeast two-hybrid system. The biological relevance of these interactions remains to be determined.  相似文献   

14.
The tomato—Pseudomonas syringae pv. tomato (Pst)—pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI). AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450) in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.  相似文献   

15.
Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the innate immune response. Although PRR-mediated signaling events are critical to the survival of plants and animals, secretion and localization of PRRs have not yet been clearly elucidated. Here we report the in vivo interaction of the endoplasmic reticulum (ER) chaperone BiP3 with the rice XA21 PRR, which confers resistance to the Gram negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). We show that XA21 is glycosylated and is primarily localized to the ER and also to the plasma membrane (PM). In BiP3-overexpressing rice plants, XA21-mediated immunity is compromised, XA21 stability is significantly decreased, and XA21 proteolytic cleavage is inhibited. BiP3 overexpression does not affect the general rice defense response, cell death or brassinolide-induced responses. These results indicate that BiP3 regulates XA21 protein stability and processing and that this regulation is critical for resistance to Xoo.  相似文献   

16.
The tripartite motif-containing protein 21 (TRIM21) plays important roles in autophagy and innate immunity. Here, we found that HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5), as an interferon-stimulated gene 15 (ISG15) E3 ligase, catalyzes the ISGylation of TRIM21 at the Lys260 and Lys279 residues. Moreover, IFN-β also induces TRIM21 ISGylation at multiple lysine residues, thereby enhancing its E3 ligase activity for K63-linkage-specific ubiquitination and resulting in increased levels of TRIM21 and p62 K63-linked ubiquitination. The K63-linked ubiquitination of p62 at Lys7 prevents its self-oligomerization and targeting to the autophagosome. Taken together, our study suggests that the ISGylation of TRIM21 plays a vital role in regulating self-oligomerization and localization of p62 in the autophagy induced by IFN-β.Subject terms: Proteins, Autophagy, Innate immunity, Post-translational modifications  相似文献   

17.
Autophagosome biogenesis requires two ubiquitin‐like conjugation systems. One couples ubiquitin‐like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin‐like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P‐containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β‐propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled‐coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6‐motif in the N‐terminal helical domain of Atg8, but not its AIM‐binding site. Accordingly, the Atg8 AIM‐binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P‐dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.  相似文献   

18.
Tan S  Wang D  Ding J  Tian D  Zhang X  Yang S 《Genetica》2011,139(11-12):1465-1475
The XA21 protein has broad spectrum resistance against Xanthomonas oryzae pv. oryzae. Although Xa21-mediated immunity is well characterized, little is known about the origin and evolutionary history of this gene in grasses. Therefore, we analyzed all Xa21 gene homologs in eight whole-genome sequenced rice lines, as well as in four gramineous genomes, rice, Brachypodium, sorghum and maize; using Arabidopsis Xa21 homologs as outgroups, 17, 7, 7 and 3 Xa21 homologs were detected in these four grasses, respectively. Synteny and phylogenetic analysis showed that frequent gene translocation, duplication and/or loss, have occurred at Xa21 homologous loci, suggesting that they have undergone or are undergoing rapid generation of copy number variations. Within the rice species, the high level of nucleotide diversity between Xa21-like orthologs showed a strong association with the presence/absence haplotypes, suggesting that the genetic structure of rice lines plays an important role in the variations between these Xa21-like orthologs. Strongly positive selection was detected in the core region of the leucine-rich repeat domains of the Xa21 subclade among the rice lines, indicating that the rapid gene diversification of Xa21 homologs may be a strategy for a given species to adapt to the changing spectrum of species-specific pathogens.  相似文献   

19.
Li W  Zhong S  Li G  Li Q  Mao B  Deng Y  Zhang H  Zeng L  Song F  He Z 《Cell research》2011,21(5):835-848
Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including innate immune responses in plants. However, the mechanism of the E3 ligase involvement in plant innate immunity is unclear. We report that a rice gene, OsBBI1, encoding a RING finger protein with E3 ligase activity, mediates broad-spectrum disease resistance. The expression of OsBBI1 was induced by rice blast fungus Magnaporthe oryzae, as well as chemical inducers, benzothiadiazole and salicylic acid. Biochemical analysis revealed that OsBBI1 protein possesses E3 ubiquitin ligase activity in vitro. Genetic analysis revealed that the loss of OsBBI1 function in a Tos17-insertion line increased susceptibility, while the overexpression of OsBBI1 in transgenic plants conferred enhanced resistance to multiple races of M. oryzae. This indicates that OsBBI1 modulates broad-spectrum resistance against the blast fungus. The OsBBI1-overexpressing plants showed higher levels of H(2)O(2) accumulation in cells and higher levels of phenolic compounds and cross-linking of proteins in cell walls at infection sites by M. oryzae compared with wild-type (WT) plants. The cell walls were thicker in the OsBBI1-overexpressing plants and thinner in the mutant plants than in the WT plants. Our results suggest that OsBBI1 modulates broad-spectrum resistance to blast fungus by modifying cell wall defence responses. The functional characterization of OsBBI1 provides insight into the E3 ligase-mediated innate immunity, and a practical tool for constructing broad-spectrum resistance against the most destructive disease in rice.  相似文献   

20.
NK lytic-associated molecule (NKLAM) is a protein involved in the cytolytic function of NK cells and CTLs. It has been localized to the cytolytic granules in NK cells and is up-regulated when cells are exposed to cytokines IL-2 or IFN-beta. We report in this study that NKLAM contains a cysteine-rich really interesting new gene (RING) in between RING-RING domain, and that this domain possesses strong homology to the RING domain of the known E3 ubiquitin ligase, Dorfin. To determine whether NKLAM functions as an E3 ligase, we performed coimmunoprecipitation binding assays with ubiquitin conjugates (Ubcs) UbcH7, UbcH8, and UbcH10. We demonstrated that both UbcH7 and UbcH8 bind to full-length NKLAM. We then performed a similar binding assay using endogenous NKLAM and UbcH8 expressed by human NK clone NK3.3 to show that the protein interaction occurs in vivo. Using the yeast two-hybrid system, we identified uridine kinase like-1 (URKL-1) protein as a substrate for NKLAM. We confirmed that NKLAM and URKL-1 interact in mammalian cells by using both immunoprecipitation and confocal microscopy. We demonstrated decreased protein expression and enhanced ubiquitination of URKL-1 in the presence of NKLAM. These data indicate that NKLAM is a RING finger protein that binds Ubcs and has as one of its substrates, URKL-1, thus defining this cytolytic protein as an E3 ubiquitin ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号