首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Caenorhabditis elegans male copulation requires coordinated temporal-spatial execution of different motor outputs. During mating, a cloacal circuit consisting of cholinergic sensory-motor neurons and sex muscles maintains the male''s position and executes copulatory spicule thrusts at his mate''s vulva. However, distinct signaling mechanisms that delimit these behaviors to their proper context are unclear. We found that dopamine (DA) signaling directs copulatory spicule insertion attempts to the hermaphrodite vulva by dampening spurious stimulus-independent sex muscle contractions. From pharmacology and genetic analyses, DA antagonizes stimulatory ACh signaling via the D2-like receptors, DOP-2 and DOP-3, and Gαo/i proteins, GOA-1 and GPA-7. Calcium imaging and optogenetics suggest that heightened DA-expressing ray neuron activities coincide with the cholinergic cloacal ganglia function during spicule insertion attempts. D2-like receptor signaling also attenuates the excitability of additional mating circuits to reduce the duration of mating attempts with unproductive and/or inappropriate partners. This suggests that, during wild-type mating, simultaneous DA-ACh signaling modulates the activity threshold of repetitive motor programs, thus confining the behavior to the proper situational context.  相似文献   

2.
L R Garcia  P Mehta  P W Sternberg 《Cell》2001,107(6):777-788
We demonstrate through cell ablation, molecular genetic, and pharmacological approaches that during C. elegans male mating behavior, the male inserts his copulatory spicules into the hermaphrodite by regulating periodic and prolonged spicule muscle contractions. Distinct cholinergic neurons use different ACh receptors and calcium channels in the spicule muscles to mediate these contractile behaviors. The PCB and PCC sensory neurons facilitate periodic contraction through muscle-encoded UNC-68 ryanodine receptor calcium channels. The SPC motor neurons trigger prolonged contraction through EGL-19 L-type voltage-gated calcium channels. The male gonad then lengthens the duration of EGL-19-mediated prolonged muscle contraction. This regulation of muscle contraction provides a paradigm to explain how animals initiate, monitor, and maintain a behavioral motor program.  相似文献   

3.

Background  

To survive and reproduce, animals must be able to modify their motor behavior in response to changes in the environment. We studied a complex behavior of Caenorhabditis elegans, male mating behavior, which provided a model for understanding motor behaviors at the genetic, molecular as well as circuit level. C. elegans male mating behavior consists of a series of six sub-steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. The male tail contains most of the sensory structures required for mating, in addition to the copulatory structures, and thus to carry out the steps of mating behavior, the male must keep his tail in contact with the hermaphrodite. However, because the hermaphrodite does not play an active role in mating and continues moving, the male must modify his tail posture to maintain contact. We provide a better understanding of the molecular and neuro-muscular pathways that regulate male tail posture during mating.  相似文献   

4.
Insect thoracic ganglia contain efferent octopaminergic unpaired median neurons (UM neurons) located in the midline, projecting bilaterally and modulating neuromuscular transmission, muscle contraction kinetics, sensory sensitivity and muscle metabolism. In locusts, these neurons are located dorsally or ventrally (DUM- or VUM-neurons) and divided into functionally different sub-populations activated during different motor tasks. This study addresses the responsiveness of locust thoracic DUM neurons to various sensory stimuli. Two classes of sense organs, cuticular exteroreceptor mechanosensilla (tactile hairs and campaniform sensilla), and photoreceptors (compound eyes and ocelli) elicited excitatory reflex responses. Chordotonal organ joint receptors caused no responses. The tympanal organ (Müller's organ) elicited weak excitatory responses most likely via generally increased network activity due to increased arousal. Vibratory stimuli to the hind leg subgenual organ never elicited responses. Whereas DUM neurons innervating wing muscles are not very responsive to sensory stimulation, those innervating leg and other muscles are very responsive to stimulation of exteroreceptors and hardly responsive to stimulation of proprioceptors. After cutting both cervical connectives all mechanosensory excitation is lost, even for sensory inputs from the abdomen. This suggests that, in contrast to motor neurons, the sensory inputs to octopaminergic efferent neuromodulatory cells are pre-processed in the suboesophageal ganglion.  相似文献   

5.
Neuronal circuits underlying rhythmic behaviors (central pattern generators: CPGs) can generate rhythmic motor output without sensory input. However, sensory input is pivotal for generating behaviorally relevant CPG output. Here we discuss recent work in the decapod crustacean stomatogastric nervous system (STNS) identifying cellular and synaptic mechanisms whereby sensory inputs select particular motor outputs from CPG circuits. This includes several examples in which sensory neurons regulate the impact of descending projection neurons on CPG circuits. This level of analysis is possible in the STNS due to the relatively unique access to identified circuit, projection, and sensory neurons. These studies are also revealing additional degrees of freedom in sensorimotor integration that underlie the extensive flexibility intrinsic to rhythmic motor systems.  相似文献   

6.
Beg AA  Ernstrom GG  Nix P  Davis MW  Jorgensen EM 《Cell》2008,132(1):149-160
Muscle contraction is normally mediated by the release of neurotransmitters from motor neurons. Here we demonstrate that protons can act as a direct transmitter from intestinal cells to stimulate muscle contraction. During the C. elegans defecation motor program the posterior body muscles contract even in the absence of neuronal inputs or vesicular neurotransmission. In this study, we demonstrate that the space between the intestine and the muscle is acidified just prior to muscle contraction and that the release of caged protons is sufficient to induce muscle contraction. PBO-4 is a putative Na+/H+ ion exchanger expressed on the basolateral membrane of the intestine, juxtaposed to the posterior body muscles. In pbo-4 mutants the extracellular space is not acidified and the muscles fail to contract. The pbo-5 and pbo-6 genes encode subunits of a "cys-loop" proton-gated cation channel required for muscles to respond to acidification. In heterologous expression assays the PBO receptor is half-maximally activated at a pH of 6.8. The identification of the mechanisms for release and reception of proton signals establishes a highly unusual mechanism for intercellular communication.  相似文献   

7.
In the CNS, activity of individual neurons has a small but quantifiable relationship to sensory representations and motor outputs. Coactivation of a few 10s to 100s of neurons can code sensory inputs and behavioral task performance within psychophysical limits. However, in a sea of sensory inputs and demand for complex motor outputs how is the activity of such small subpopulations of neurons organized? Two theories dominate in this respect: increases in spike rate (rate coding) and sharpening of the coincidence of spiking in active neurons (temporal coding). Both have computational advantages and are far from mutually exclusive. Here, we review evidence for a bias in neuronal circuits toward temporal coding and the coexistence of rate and temporal coding during population rhythm generation. The coincident expression of multiple types of gamma rhythm in sensory cortex suggests a mechanistic substrate for combining rate and temporal codes?on the basis of stimulus strength.  相似文献   

8.
Motor patterns during kicking movements in the locust   总被引:2,自引:2,他引:0  
Locusts (Schistocerca gregaria) use a distinctive motor pattern to extend the tibia of a hind leg rapidly in a kick. The necessary force is generated by an almost isometric contraction of the extensor tibiae muscle restrained by the co-contraction of the flexor tibiae (co-contraction phase) and aided by the mechanics of the femoro-tibial joint. The stored energy is delivered suddenly when the flexor muscle is inhibited. This paper analyses the activity of motor neurons to the major hind leg muscles during kicking, and relates it to tibial movements and the resultant forces.During the co-contraction phase flexor tibiae motor neurons are driven by apparently common sources of synaptic inputs to depolarized plateaus at which they spike. The two excitatory extensor motor neurons are also depolarized by similar patterns of synaptic inputs, but with the slow producing more spikes at higher frequencies than the fast. Trochanteral depressors spike at high frequency, the single levator tarsi at low frequency, and common inhibitors 2 and 3 spike sporadically. Trochanteral levators, depressor tarsi, and a retractor unguis motor neuron are hyperpolarized.Before the tibia extends all flexor motor neurons are hyperpolarized simultaneously, two common inhibitors, and the levator trochanter and depressor tarsi motor neurons are depolarized. Later, but still before the tibial movement starts, the extensor tibiae and levator tarsi motor neurons are hyperpolarized. After the movement has started, the extensor motor neurons are hyperpolarized further and the depressor trochanteris motor neurons are also hyperpolarized, indicating a contribution of both central and sensory feedback pathways.Variations in the duration of the co-contraction of almost twenty-fold, and in the number of spikes in the fast extensor tibiae motor neuron from 2–50 produce a spectrum of tibial extensions ranging from slow and weak, to rapid and powerful. Flexibility in the networks producing the motor pattern therefore results in a range of movements suited to the fluctuating requirements of the animal.  相似文献   

9.
One of the fundamental questions in neural development is how neurons form synapses of the appropriate size for the efficient transfer of information across neural circuits. Here we investigated the mechanisms that bring about the size correlation between synapses and postsynaptic cells during development of Drosophila neuromuscular junctions (NMJs). To do this, we made use of a unique system in which two neighboring muscles (M6 and M7) are innervated by the same neurons. In mature NMJs, synaptic size on M6 is normally larger than that on M7, in accordance with the difference in muscle volume; this ensures the same extent of contraction of both muscles, and we refer to this correspondence as "matching". We found that matching was apparent in larvae 8 h after hatching, but not in newly hatched larvae despite the difference in muscle volume. When sensory inputs were suppressed by the expression of tetanus toxin in sensory neurons, matching did not occur, although synapses were able to grow. Matching was also suppressed by the inhibition of motoneuronal activity. These results suggest that matching is induced by regulating the rate of synaptic growth on M6 and M7 in an experience- and activity-dependent manner. It seems most likely that retrograde signals from the postsynaptic to the presynaptic cell convey the information about muscle cell size. We thus examined whether a candidate of retrograde signaling in NMJs, BMP signaling, is involved in matching. However, there was no effect on matching in BMP type II receptor gene mutants, suggesting that other experience-driven mechanisms besides BMP signaling are involved in the proper development of synapses.  相似文献   

10.
Serotonin (5-HT) induces a variety of physiological and behavioral effects in crustaceans. However, the mechanisms employed by 5-HT to effect behavorial changes are not fully understood. Among the mechanisms by which these changes might occur are alterations in synaptic drive and efficacy of sensory, interneurons and motor neurons, as well as direct effects on muscles. We investigated these aspects with the use of a defined sensory-motor system, which is entirely contained within a single abdominal segment and consists of a ‘cuticular sensory neurons–segmental ganglia–abdominal superficial flexor motor neurons–muscles’ circuit. Our studies address the role of 5-HT in altering (1) the activity of motor neurons induced by sensory stimulation; (2) the inherent excitability of superficial flexor motor neurons; (3) transmitter release properties of the motor nerve terminal and (4) input resistance of the muscle. Using en passant recordings from the motor nerve, with and without sensory stimulation, and intracellular recordings from the muscle, we show that 5-HT enhances sensory drive and output from the ventral nerve cord resulting in an increase in the firing frequency of the motor neurons. Also, 5-HT increases transmitter release at the neuromuscular junction, and alters input resistance of the muscle fibers  相似文献   

11.
One of the fundamental questions in neural development is how neurons form synapses of the appropriate size for the efficient transfer of information across neural circuits. Here we investigated the mechanisms that bring about the size correlation between synapses and postsynaptic cells during development of Drosophila neuromuscular junctions (NMJs). To do this, we made use of a unique system in which two neighboring muscles (M6 and M7) are innervated by the same neurons. In mature NMJs, synaptic size on M6 is normally larger than that on M7, in accordance with the difference in muscle volume; this ensures the same extent of contraction of both muscles, and we refer to this correspondence as “matching”. We found that matching was apparent in larvae 8 h after hatching, but not in newly hatched larvae despite the difference in muscle volume. When sensory inputs were suppressed by the expression of tetanus toxin in sensory neurons, matching did not occur, although synapses were able to grow. Matching was also suppressed by the inhibition of motoneuronal activity. These results suggest that matching is induced by regulating the rate of synaptic growth on M6 and M7 in an experience‐ and activity‐dependent manner. It seems most likely that retrograde signals from the postsynaptic to the presynaptic cell convey the information about muscle cell size. We thus examined whether a candidate of retrograde signaling in NMJs, BMP signaling, is involved inmatching. However, there was no effect on matching inBMP type II receptor gene mutants, suggesting thatother experience‐driven mechanisms besides BMP signaling are involved in the proper development of synapses. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

12.
Intermuscular coupling has been investigated to understand neural inputs to coordinate muscles in a motor performance. However, little is known on the role of nerve innervation on intermuscular coupling. The purpose of this study was to investigate how the anatomy of nerve distribution affected intermuscular coupling in the hand during static grip. Electromyographic (EMG) signals were recorded from intrinsic and extrinsic muscles while subjects performed a static grip. Coherence was computed for muscle pairs innervated by either the same or different nerves. The results did not support the hypothesis that muscles sharing the same nerve exhibit greater coupling than muscles innervated by different nerves. In general, extrinsic muscle pairs displayed higher coherence than intrinsic pairs. The results suggest that intermuscular coupling in a voluntary motor task is likely modulated in a functional manner and that different nerves might transport common neural inputs to functionally coupled muscles.  相似文献   

13.
Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guineapig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin-and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.  相似文献   

14.
Three flexor muscles of the posterior tentacles of the snail Helix pomatia have recently been described. Here, we identify their local motor neurons by following the retrograde transport of neurobiotin injected into these muscles. The mostly unipolar motor neurons (15–35 µm) are confined to the tentacle digits and send motor axons to the M2 and M3 muscles. Electron microscopy revealed small dark neurons (5–7 µm diameter) and light neurons with 12–18 (T1 type) and 18–30 µm diameters (T2 type) in the digits. The diameters of the neurobiotin-labeled neurons corresponded to the T1 type light neurons. The neuronal processes of T1 type motor neurons arborize extensively in the neuropil area of the digits and receive synaptic inputs from local neuronal elements involved in peripheral olfactory information processing. These findings support the existence of a peripheral stimulus–response pathway, consisting of olfactory stimulus—local motor neuron—motor response components, to generate local lateral movements of the tentacle tip (“quiver”). In addition, physiological results showed that each flexor muscle receives distinct central motor commands via different peritentacular nerves and common central motor commands via tentacle digits, respectively. The distal axonal segments of the common pathway can receive inputs from local interneurons in the digits modulating the motor axon activity peripherally without soma excitation. These elements constitute a local microcircuit consisting of olfactory stimulus—distal segments of central motor axons—motor response components, to induce patterned contraction movements of the tentacle. The two local microcircuits described above provide a comprehensive neuroanatomical basis of tentacle movements without the involvement of the CNS.  相似文献   

15.
Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-γ and CaMKII.  相似文献   

16.
Sound production that is mediated by intrinsic or extrinsic swim bladder musculature has evolved multiple times in teleost fishes. Sonic muscles must contract rapidly and synchronously to compress the gas‐filled bladder with sufficient velocity to produce sound. Muscle modifications that may promote rapid contraction include small fiber diameter, elaborate sarcoplasmic reticulum (SR), triads at the A–I boundary, and cores of sarcoplasm. The diversity of innervation patterns indicate that sonic muscles have independently evolved from different trunk muscle precursors. The analysis of sonic motor pathways in distantly related fishes is required to determine the relationships between sonic muscle evolution and function in acoustic signaling. We examined the ultrastructure of sonic and adjacent hypaxial muscle fibers and the distribution of sonic motor neurons in the coral reef Pyramid Butterflyfish (Chaetodontidae: Hemitaurichthys polylepis) that produces sound by contraction of extrinsic sonic muscles near the anterior swim bladder. Relative to adjacent hypaxial fibers, sonic muscle fibers were sparsely arranged among the endomysium, smaller in cross‐section, had longer sarcomeres, a more elaborate SR, wider t‐tubules, and more radially arranged myofibrils. Both sonic and non‐sonic muscle fibers possessed triads at the Z‐line, lacked sarcoplasmic cores, and had mitochondria among the myofibrils and concentrated within the peripheral sarcoplasm. Sonic muscles of this derived eutelost possess features convergent with other distant vocal taxa (other euteleosts and non‐euteleosts): small fiber diameter, a well‐developed SR, and radial myofibrils. In contrast with some sonic fishes, however, Pyramid Butterflyfish sonic muscles lack sarcoplasmic cores and A–I triads. Retrograde nerve label experiments show that sonic muscle is innervated by central and ventrolateral motor neurons associated with spinal nerves 1–3. This restricted distribution of sonic motor neurons in the spinal cord differs from many euteleosts and likely reflects the embryological origin of sonic muscles from hypaxial trunk precursors rather than occipital somites. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The present experiments attempt to find the meridian phenomenon and how the needle feeling propagates along the given meridian channels. The neurobiological mechanisms of the meridian were studied with neuroelectrical recording from the motor neurons and CB-HRP retrograde histochemistry technique in both rats and cats. The results demonstrated that most, but not all, of alpha motor neurons supplying a muscle group of a given meridian were selectively activated by afferent inputs originating not only from homonymous or heterogeneous, but synergistic muscle, but also from the skin nerve overlying the muscle group of the homonymous meridian. However, the afferent inputs from the heterogeneous meridian have very weak or no effect. On the other hand, the labeled motor neurons supplying a given meridian muscles form a discrete longitudinal column with a definite bound in the lateral ventral horn. There are oriented dendro-dendristes projections between the labeled motor neurons.The characteristics of both sel  相似文献   

18.
Wang L  Klein R  Zheng B  Marquardt T 《Neuron》2011,71(2):263-277
It is a long-standing question how developing motor and sensory neuron projections cooperatively form?a common principal grid of peripheral nerve pathways relaying behavioral outputs and somatosensory inputs. Here, we explored this issue through targeted cell lineage and gene manipulation in mouse, combined with in?vitro live axon imaging. In the absence of motor projections, dorsal (epaxial) and ventral (hypaxial) sensory projections form in a randomized manner, while removal of EphA3/4 receptor tyrosine kinases expressed by epaxial motor axons triggers selective failure to form epaxial sensory projections. EphA3/4 act non-cell-autonomously by inducing sensory axons to track along preformed epaxial motor projections. This involves cognate ephrin-A proteins on sensory axons but is independent from EphA3/4 signaling in motor axons proper. Assembly of peripheral nerve pathways thus involves motor axon subtype-specific signals that couple sensory projections to discrete motor pathways.  相似文献   

19.
In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three α-subunits, UNC-38, UNC-63 and ACR-12, and two non–α-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf) mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.  相似文献   

20.
Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号