首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic polypeptide, distantly related to transforming growth factor-beta (TGF- beta), originally isolated by virtue of its ability to induce dopamine uptake and cell survival in cultures of embryonic ventral midbrain dopaminergic neurons, and more recently shown to be a potent neurotrophic factor for motorneurons. The biological activities and distribution of this molecule outside the central nervous system are presently unknown. We report here on the mRNA expression, biological activities and initial receptor binding characterization of GDNF and a shorter spliced variant termed GDNF beta in different organs and peripheral neurons of the developing rat. Both GDNF mRNA forms were found to be most highly expressed in developing skin, whisker pad, kidney, stomach and testis. Lower expression was also detected in developing skeletal muscle, ovary, lung, and adrenal gland. Developing spinal cord, superior cervical ganglion (SCG) and dorsal root ganglion (DRG) also expressed low levels of GDNF mRNA. Two days after nerve transection, GDNF mRNA levels increased dramatically in the sciatic nerve. Overall, GDNF mRNA expression was significantly higher in peripheral organs than in neuronal tissues. Expression of either GDNF mRNA isoform in insect cells resulted in the production of indistinguishable mature GDNF polypeptides. Purified recombinant GDNF promoted neurite outgrowth and survival of embryonic chick sympathetic neurons. GDNF produced robust bundle-like, fasciculated outgrowth from chick sympathetic ganglion explants. Although GDNF displayed only low activity on survival of newborn rat SCG neurons, this protein was found to increase the expression of vasoactive intestinal peptide and preprotachykinin-A mRNAs in cultured SCG neurons. GDNF also promoted survival of about half of the neurons in embryonic chick nodose ganglion and a small subpopulation of embryonic sensory neurons in chick dorsal root and rat trigeminal ganglia. Embryonic chick sympathetic neurons expressed receptors for GDNF with Kd 1-5 x 10(-9) M, as measured by saturation and displacement binding assays. Our findings indicate GDNF is a new neurotrophic factor for developing peripheral neurons and suggest possible non-neuronal roles for GDNF in the developing reproductive system.  相似文献   

2.
Neurturin (NRTN), a member of the GDNF family of neurotrophic factors, promotes the survival and function of several neuronal populations in the peripheral and central nervous system. Recent gene ablation studies have shown that NRTN is a neurotrophic factor for many cranial parasympathetic and enteric neurons, whereas its significance for the sacral parasympathetic neurons has not been studied. NRTN signals via a receptor complex composed of the high-affinity binding receptor component GFRalpha2 and the transmembrane tyrosine kinase Ret. The aim of this study was to determine whether NRTN could be an endogenous trophic factor for penis-projecting parasympathetic neurons. NRTN mRNA was expressed in smooth muscle of penile blood vessels and corpus cavernosum in adult rat as well as in several intrapelvic organs, whereas GFRalpha2 and Ret mRNAs were expressed in virtually all cell bodies of the penile neurons, originating in the major pelvic ganglia. (125)I-NRTN injected into the shaft of the penis was retrogradely transported into the major pelvic and dorsal root ganglia. Mice lacking the GFRalpha2 receptor component had significantly less nitric oxide synthase-containing nerve fibers in the dorsal penile and cavernous nerves. In conclusion, these data suggest that NRTN acts as a target-derived survival and/or neuritogenic factor for penile erection-inducing postganglionic neurons.  相似文献   

3.
Adult rat retinal ganglion cells (RGC) undergo degeneration after optic nerve transection. Studies have shown that exogenously applied neurotrophic factors such as brain-derived neurotrophic factor (BDNF) can attenuate axotomy-induced as well as developmental RGC death. Here, we examined whether glial cell line-derived neurotrophic factor (GDNF), a known neurotrophic factor for dopaminergic neurons and motor neurons, could provide neurotrophic support to RGC in adult rats. We determined whether RGC could retrogradely transport GDNF from their target tissue. After injection into the superior colliculus of adult rats, 125I-GDNF was retrogradely transported to contralateral eyes but not to ipsilateral eyes. The transport of 125I-GDNF could be blocked by coinjection of excess unlabeled GDNF, indicating that it was receptor mediated. We tested whether intravitreally applied GDNF could prevent axotomy-induced RGC degeneration. The RGC were prelabeled with Fluorogold (FG) and axotomized by intraorbital optic nerve transection. GDNF, BDNF (positive control), cytochrome c (negative control), or a GDNF/BDNF combination was injected intravitreally on days 0 and 7. On day 14, FG-labeled RGC were counted from whole-mount retinas. We found that, similar to BDNF, GDNF could significantly attenuate the degeneration of RGC in a dose-dependent fashion. Furthermore, the combination treatment of GDNF and BDNF showed better protection than either factor used individually. Our data indicate that GDNF is a neurotrophic factor for the adult rat RGC. GDNF, like BDNF, may be useful for the treatment of human RGC degenerative diseases.  相似文献   

4.
Glial cell line-derived neurotrophic factor (GDNF), neurturin (NTN) and neublastin/artemin (ART) are distant members of the transforming growth factor beta family, and have been shown to elicit neurotrophic effects upon several classes of peripheral and central neurons. Limited information from in vitro and expression studies has also substantiated a role for GDNF family ligands in mammalian somatosensory neuron development. Here, we show that although dorsal root ganglion (DRG) sensory neurons express GDNF family receptors embryonically, they do not survive in response to their ligands. The regulation of survival emerges postnatally for all GDNF family ligands. GDNF and NTN support distinct subpopulations that can be separated with respect to their expression of GDNF family receptors, whereas ART supports neurons in populations that are also responsive to GDNF or NTN. Sensory neurons that coexpress GDNF family receptors are medium sized, whereas small-caliber nociceptive cells preferentially express a single receptor. In contrast to brain-derived neurotrophic factor (BDNF)-dependent neurons, embryonic nerve growth factor (NGF)-dependent nociceptive neurons switch dependency to GDNF, NTN and ART postnatally. Neurons that survive in the presence of neurotrophin 3 (NT3) or neurotrophin 4 (NT4), including proprioceptive afferents, Merkel end organs and D-hair afferents, are also supported by GDNF family ligands neonatally, although at postnatal stages they lose their dependency on GDNF and NTN. At late postnatal stages, ART prevents survival elicited by GDNF and NTN. These data provide new insights on the roles of GDNF family ligands in sensory neuron development.  相似文献   

5.
Neurotrophic factors, such as nerve growth factor (NGF), have been shown to promote the differentiation of neural crest neuroblasts into sympathetic neurons, whereas glucocorticoids promote the endocrine phenotype of adrenal medullary chromaffin cells. This pluripotency is preserved to some extent in adult chromaffin cells, with NGF and other neurotrophic factors influencing the differentiation of these cells. In this study, the effects of glial cell line-derived neurotrophic factor (GDNF) on explanted chromaffin tissue have been investigated. The localization of mRNAs corresponding to the two components of the GDNF receptor, GDNF family receptor alpha 1 (GFRalpha1) and Ret, were demonstrated in adult adrenal medullary ganglion cells. GFRalpha1 mRNA was expressed in explanted chromaffin tissue at levels dependent on the presence of serum in the medium but decreased on the addition of blocking antibodies against transforming growth factor beta (TGFbeta). However, TGFbeta1 (1 ng/ml) did not upregulate GFRalpha1 mRNA expression when added to serum-free medium. GDNF induced neurite formation from chromaffin cells, as measured by the ratio of neurite-bearing versus total number of chromaffin cells in primary cultures of adult adrenal medulla. The most potent dose inducing neurites from chromaffin cells was 100 ng/ml GDNF. However, this dose was not as efficient as that seen when chromaffin cells were stimulated with NGF (100 ng/ml). Thus, adrenal medullary cells express mRNAs for the GDNF receptor components Ret and GFRalpha1, increase their expression upon being cultured in serum-containing medium and respond to GDNF treatment with an increase in the number of cells that develop nerve processes.  相似文献   

6.
GDNF and neurturin are structurally related neurotrophic factors that promote the survival of many different kinds of neurons and influence axonal and dendritic growth and synaptic function. These diverse effects are mediated via multicomponent receptors consisting of the Ret receptor tyrosine kinase plus one of two structurally related GPI-linked receptors, GFR(alpha)-1 and GFR(alpha)-2. To ascertain how the expression of these receptors is regulated during development, we cultured embryonic neurons under different experimental conditions and used competitive RT/PCR to measure the levels of the mRNAs encoding these receptors. We found that depolarising levels of KCl caused a marked increase in GFR(alpha)-1 mRNA and a marked decrease in GFR(&agr;)-2 mRNA in sympathetic, parasympathetic and sensory neurons. These changes were accompanied by increased responsiveness to GDNF and decreased responsiveness to neurturin, and were inhibited by L-type Ca(2+) channel antagonists, suggesting that they were due to elevated intracellular free-Ca(2+). There was no consistent effect of depolarising levels of KCl on ret mRNA expression, and neither GDNF nor neurturin significantly affected receptor expression. These results show that depolarisation has marked and opposing actions on the expression of GFR(&agr;)-1 and GFR(&agr;)-2, which are translated into corresponding changes in neuronal responsiveness to GDNF and neurturin. This provides evidence for a mechanism of regulating the neurotrophic factor responses of neurons by neural activity that has important implications for structural and functional plasticity in the developing nervous system.  相似文献   

7.
The neurotrophic factors that influence the development and function of the parasympathetic branch of the autonomic nervous system are obscure. Recently, neurturin has been found to provide trophic support to neurons of the cranial parasympathetic ganglion. Here we show that GDNF signaling via the RET/GFR(alpha)1 complex is crucial for the development of cranial parasympathetic ganglia including the submandibular, sphenopalatine and otic ganglia. GDNF is required early for proliferation and/or migration of the neuronal precursors for the sphenopalatine and otic ganglia. Neurturin exerts its effect later and is required for further development and maintenance of these neurons. This switch in ligand dependency during development is at least partly governed by the altered expression of GFR(&agr;) receptors, as evidenced by the predominant expression of GFR(&agr;)2 in these neurons after ganglion formation.  相似文献   

8.
Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor with an established role in sensory neuron development. More recently it has also been shown to support adult sensory neuron survival and exert a neuroprotective effect on damaged sensory neurons. Some adult small-sized dorsal root ganglion (DRG) cells that are GDNF-sensitive sensory neurons express the inhibitory peptide somatostatin (SOM). Thus, we tested the hypothesis that prolonged GDNF administration would regulate SOM expression in sensory neuron cell bodies in the dorsal root ganglia (DRG) and activity-induced release of SOM from axon terminals in the dorsal horn. Continuous intrathecal delivery of GDNF for 11-13 days significantly increased the number of small DRG cells that expressed SOM. Furthermore, GDNF treatment evoked SOM release in the isolated dorsal horn following electrical stimulation of the dorsal roots that was otherwise undetectable in control rats. Conversely capsaicin-induced release of SOM (EC(50) 50 nM) was not modified by GDNF treatment. These results show that GDNF can regulate central synaptic function in SOM-containing sensory neurons.  相似文献   

9.
The glial cell line-derived (GDNF) family of trophic factors, GDNF, neurturin, persephin and artemin, are known to support the survival and regulate differentiation of many neuronal populations, including peripheral autonomic, enteric and sensory neurons. Members of this family of related ligands bind to specific GDNF family receptor (GFR) proteins, which complex and signal through the Ret receptor tyrosine kinase. We showed previously that GDNF protein was detectable in olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ON). In this immunohistochemical study, we localized GDNF, neurturin, GFRα1, GFRα2 and Ret in the adult rat ON and olfactory bulb. We found that GDNF and Ret were widely expressed by immature and mature OSNs, while neurturin was selectively expressed in a subpopulation of OSNs zonally restricted in the ON. The GFRs had differential expression, with mature OSNs and their axons preferentially expressing GFRα1, whereas progenitors and immature neurons more avidly expressed GFRα2. In the bulb, GDNF was highly expressed by the mitral and tufted cells, and by periglomerular cells, and its distribution generally resembled that of Ret, with the exception that Ret was far more predominant on fibers than cell bodies. Neurturin, in contrast, was present at lower levels and was more restricted in its expression to the axonal compartment. GFRα2 appeared to be the dominant accessory protein in the bulb. These data are supportive of two members of this neurotrophic family, GDNF and neurturin, playing different physiological roles in the olfactory neuronal system.  相似文献   

10.
Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are members of the transforming growth factor-beta family and have been shown to elicit neurotrophic effects upon several classes of neurons including dopaminergic neurons, motoneurons, parasympathetic, sympathetic as well as primary sensory neurons. However, there is little information available on their roles in cutaneous innervation. Herein, we have studied the regulation of gdnf, ntn and the GDNF family receptors and examined their role in the development of facial cutaneous innervation in GDNF mutant mice. A dynamic spatial and temporal regulation of gdnf, ntn and their ligand binding receptors within the follicle-sinus complex correlate with development of distinct subclasses of sensory nerve endings. Furthermore, development of NGF-dependent myelinated mechanoreceptors, i.e. reticular and transverse lanceolate endings also require GDNF during ending formation and maintenance. In addition, ligand and receptor association seems to be intricately linked to a local Schwann cell-axon interaction essential for sensory terminal formation. Our results suggests that functionally specified nerve endings depend on different GDNF family members and that in contrast to neurotrophins, this family of neurotrophic factors may be acting at local sites of terminal Schwann cell-axon growth cone interactions and that they collaborate with neurotrophins by supporting the same populations of neurons but at different times in development.  相似文献   

11.
Galectin-1 (GAL-1), a member of a family of β-galactoside binding animal lectins, is predominantly expressed in isolectin B4 (IB4)-binding small non-peptidergic (glial cell line-derived neurotrophic factor (GDNF)-responsive) sensory neurons in the sections of adult rat dorsal root ganglia (DRG), but its functional role and the regulatory mechanisms of its expression in the peripheral nervous system remain unclear. In the present study, both recombinant nerve growth factor (NGF) and GDNF (50 ng/ml) promoted neurite outgrowth from cultured adult rat DRG neurons, whereas GDNF, but not NGF, significantly increased the number of IB4-binding neurons and the relative protein expression of GAL-1 in the neuron-enriched culture of DRG. The GAL-1 expression in immortalized adult rat Schwann cells IFRS1 and DRG neuron-IFRS1 cocultures was unaltered by treatment with GDNF, which suggests that GDNF/GAL-1 signaling axis is more related to neurite outgrowth, rather than neuron-Schwann cell interactions. The GDNF-induced neurite outgrowth and GAL-1 upregulation were attenuated by anti-GDNF family receptor (RET) antibody and phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, suggesting that the neurite-outgrowth promoting activity of GDNF may be attributable, at least partially, to the upregulation of GAL-1 through RET-PI3K pathway. On the contrary, no significant differences were observed between GAL-1 knockout and wild-type mice in DRG neurite outgrowth in the presence or absence of GDNF. Considerable immunohistochemical colocalization of GAL-3 with GAL-1 in DRG sections and GDNF-induced upregulation of GAL-3 in cultured DRG neurons imply the functional redundancy between these galectins.  相似文献   

12.
GDNF来自于小胶质神经元,首先作为中脑多巴胺能神经元的复活因子被发现,可促进细胞存活,并有增加多巴胺神经元细胞大小及轴突长度的作用。GDNF通过与锚定蛋白细胞表面受体糖基磷脂酰肌醇的相互作用来调节细胞活性。GDNF家族a-1受体,通过跨膜酪氨酸受体或者神经元细胞黏附分子,来促进细胞存活,神经突生长,以及突触发育。后续的研究提示,无论未成年还是成体大脑,GDNF对多种神经细胞都有复活的作用,并与一些周围神经复活、迁移、分化相关。不同的脑缺血实验模型均证实了外源性GDNF对于病灶部位及全脑的神经保护作用,包括局部应用营养因子,利用病毒载体运载GDNF基因以及移植表达GDNF的细胞。近来研究还证实,GDNF不仅对多巴胺能神经元,中枢和周围神经系统的运动、感觉神经元,以及自主神经元有营养和保护作用,对于非神经系统也有不同调节作用。本文将重点讨论这些GDNF作用的不同策略以及机制。  相似文献   

13.
Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line‐derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post‐natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post‐ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret‐expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4‐reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions.  相似文献   

14.
15.
During development, parasympathetic ciliary ganglion neurons arise from the neural crest and establish synaptic contacts on smooth and striate muscle in the eye. The factors that promote the ciliary ganglion pioneer axons to grow toward their targets have yet to be determined. Here, we show that glial cell line-derived neurotrophic factor (GDNF) and neurturin (NRTN) constitute target-derived factors for developing ciliary ganglion neurons. Both GDNF and NRTN are secreted from eye muscle located in the target and trajectory pathway of ciliary ganglion pioneer axons during the period of target innervation. After this period, however, the synthesis of GDNF declines markedly, while that of NRTN is maintained throughout the cell death period. Furthermore, both in vitro and in vivo function-blocking of GDNF at early embryonic ages almost entirely suppresses ciliary axon outgrowth. These results demonstrate that target-derived GDNF is necessary for ciliary ganglion neurons to innervate ciliary muscle in the eye. Since the down-regulation of GDNF in the eye is accompanied by down-regulation of GFRalpha1 and Ret, but not of GFRalpha2, in innervating ciliary ganglion neurons, the results also suggest that target-derived GDNF regulates the expression of its high-affinity coreceptors.  相似文献   

16.
胶质细胞源性神经营养因子(glial cell derived neurotrophic factor,GDNF)属转化生长因子β超家族成员,其成熟蛋白由134个氨基酸残基组成,而GDNF受体广泛分布于外周和中枢神经系统。GDNF不仅可以促进多巴胺能神经元、运动神经元的存活,对交感、副交感以及感觉神经元具有营养作用,还能够影响神经元的发育、分化并对非神经系统的发育也具有重要作用。近年来随着人们对疼痛认识的深入,疼痛的机制也不再限于神经元功能的改变,还受胶质细胞活化、多种营养因子、细胞因子及相应受体、离子通道等多方面因素的影响。为此,本文就近年来GDNF参与疼痛调节的相关研究进展做一简要综述。  相似文献   

17.
We combined retrograde tracing techniques with single-neuron RT-PCR to compare the expression of neurotrophic factor receptors in nodose vs. jugular vagal sensory neurons. The neurons were further categorized based on location of their terminals (tracheal or lungs) and based on expression of the ionotropic capsaicin receptor TRPV1. Consistent with functional studies, nearly all jugular neurons innervating the trachea and lungs expressed TRPV1. With respect to the neurotrophin receptors, the TRPV1-expressing jugular C-fiber neurons innervating both the trachea and lung compartments preferentially expressed tropomyosin-receptor kinase A (TrkA), with only a minority of neurons expressing TrkB or TrkC. The nodose neurons that express TRPV1 (presumed nodose C-fibers) innervate mainly intrapulmonary structures. These neurons preferentially expressed TrkB, with only a minority expressing TrkA or TrkC. The expression pattern in tracheal TRPV1-negative neurons, nodose tracheal presumed Aδ-fiber neurons as well as the intrapulmonary TRPV1-negative presumed Aβ-fiber neurons, was similar to that observed in the nodose C-fiber neurons. We also evaluated the expression of GFRα receptors and RET (receptors for the GDNF family ligands). Virtually all vagal sensory neurons innervating the respiratory tract expressed RET and GFRα1. The jugular neurons also categorically expressed GFRα3, as well as ~50% of the nodose neurons. GFRα2 was expressed in ~50% of the neurons irrespective of subtype. The results reveal that Trk receptor expression in vagal afferent neurons innervating the adult respiratory tract depends more on the location of the cell bodies (jugular vs. nodose ganglion) than either the location of the terminals or the functional phenotype of the nerve. The data also reveal that in addition to neurotrophins, the GDNF family ligands may be important neuromodulators of vagal afferent nerves innervating the adult respiratory tract.  相似文献   

18.
The inner ear spiral ganglion is populated by bipolar neurons connecting the peripheral sensory receptors, the hair cells, with central neurons in auditory brain stem nuclei. Hearing impairment is often a consequence of hair cell death, e.g., from acoustic trauma. When deprived of their peripheral targets, the spiral ganglion neurons (SGNs) progressively degenerate. For effective clinical treatment using cochlear prostheses, it is essential to maintain the SGN population. To investigate their survival dependence, synaptogenesis, and regenerative capacity, adult mouse SGNs were separated from hair cells and studied in vitro in the presence of various neurotrophins and growth factors. Coadministration of fibroblast growth factor 2 (FGF-2) and glial cell line-derived neurotrophic factor (GDNF) provided support for long-term survival, while FGF-2 alone could strongly promote neurite regeneration. Fibroblast growth factor receptor FGFR-3-IIIc was found to upregulate and translocate to the nucleus in surviving SGNs. Surviving SGNs formed contacts with other SGNs after they were deprived of the signals from the hair cells. In coculture experiments, neurites extending from SGNs projected toward hair cells. Interestingly, adult mouse spiral ganglion cells could carry out both symmetric and asymmetric cell division and give rise to new neurons. The authors propose that a combination of FGF-2 and GDNF could be an efficient route for clinical intervention of secondary degeneration of SGNs. The authors also demonstrate that the adult mammalian inner ear retains progenitor cells, which could commit neurogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号