首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Identifying major antigenic and protective epitopes of the H7 hemagglutinin (HA) will be important for understanding the antibody response to vaccines developed against the novel influenza H7N9 viruses that emerged in China in 2013. To facilitate antigenic characterization of the H7N9 HA and to develop reagents for evaluation of H7N9 candidate vaccines, we generated a panel of murine monoclonal antibodies (mAbs) to the HA of A/Shanghai/2/2013 using mammalian cell-derived virus-like particles (VLP) containing the H7 HA. Neutralizing antibodies identified an HA epitope corresponding to antigenic site A on the structurally similar influenza H3 hemagglutinin. Importantly, the neutralizing antibodies protect against A/Shanghai/2/2013 challenge. This antigenic site is conserved among many H7 viruses, including strains of both Eurasian and North American lineage, and the isolated neutralizing antibodies are cross-reactive with older H7 vaccine strains. The results indicate that the identified antigenic site is a potentially important protective epitope and suggest the potential benefit of cross-reactive antibody responses to vaccination with H7 candidate vaccines.  相似文献   

2.

Background

Influenza viruses are undergoing continuous and rapid evolution. The fatal influenza A/H7N9 has drawn attention since the first wave of infections in March 2013, and raised more grave concerns with its increased potential to spread among humans. Experimental studies have revealed several host and virulence markers, indicating differential host binding preferences which can help estimate the potential of causing a pandemic. Here we systematically investigate the sequence pattern and structural characteristics of novel influenza A/H7N9 using computational approaches.

Results

The sequence analysis highlighted mutations in protein functional domains of influenza viruses. Molecular docking and molecular dynamics simulation revealed that the hemagglutinin (HA) of A/Taiwan/1/2017(H7N9) strain enhanced the binding with both avian and human receptor analogs, compared with the previous A/Shanghai/02/2013(H7N9) strain. The Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) calculation revealed the change of residue-ligand interaction energy and detected the residues with conspicuous binding preference.

Conclusion

The results are novel and specific to the emerging influenza A/Taiwan/1/2017(H7N9) strain compared with A/Shanghai/02/2013(H7N9). Its enhanced ability to bind human receptor analogs, which are abundant in the human upper respiratory tract, may be responsible for the recent outbreak. Residues showing binding preference were detected, which could facilitate monitoring the circulating influenza viruses.
  相似文献   

3.

Background

Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes.

Methodology/Principal Findings

LAIV candidate A/Anhui/1/2013(H7N9)-CDC-LV7A (abbreviated as CDC-LV7A), based on the Russian MDV, A/Leningrad/134/17/57 (H2N2), was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering) in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9)RG-LV1 and A(H7N9)RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9) virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.

Conclusions/Significance

Our data indicate that the A/Anhui/1/2013(H7N9)-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for distribution by WHO to vaccine manufacturers.  相似文献   

4.
Avian influenza A H7N7/NL/219/03 virus creates a serious pandemic threat to human health because it can transmit directly from domestic poultry to humans and from human to human. Our previous vaccine study reported that mice when immunized intranasally (i.n) with live Bac-HA were protected from lethal H7N7/NL/219/03 challenge, whereas incomplete protection was obtained when administered subcutaneously (s.c) due to the fact that H7N7 is a poor inducer of neutralizing antibodies. Interestingly, our recent vaccine studies reported that mice when vaccinated subcutaneously with Bac-HA (H7N9) was protected against both H7N9 (A/Sh2/2013) and H7N7 virus challenge. HA1 region of both H7N7 and H7N9 viruses are differ at 15 amino acid positions. Among those, we selected three amino acid positions (T143, T198 and I211) in HA1 region of H7N7. These amino acids are located within or near the receptor binding site. Following the selection, we substituted the amino acid at these three positions with amino acids found on H7N9HA wild-type. In this study, we evaluate the impact of amino acid substitutions in the H7N7 HA-protein on the immunogenicity. We generated six mutant constructs from wild-type influenza H7N7HA cDNA by site directed mutagenesis, and individually expressed mutant HA protein on the surface of baculovirus (Bac-HAm) and compared their protective efficacy of the vaccines with Bac-H7N7HA wild-type (Bac-HA) by lethal H7N7 viral challenge in a mouse model. We found that mice immunized subcutaneously with Bac-HAm constructs T143A or T198A-I211V or I211V-T143A serum showed significantly higher hemagglutination inhibition and neutralization titer against H7N7 and H7N9 viruses when compared to Bac-HA vaccinated mice groups. We also observed low level of lung viral titer, negligible weight loss and complete protection against lethal H7N7 viral challenge. Our results indicated that amino acid substitution at position 143 or 211 improve immunogenicity of H7N7HA vaccine against H7N7/NL/219/03 virus.  相似文献   

5.
Since the identification of the novel reassortant avian influenza A (H7N9) virus in China in 2013, until Jun 30, 2017, the virus has caused five epidemic waves leading to a total of 1,552 human infections, with a fatality rate of about 40%. In the spring of 2017, highly pathogenic avian influenza (HPAI) H7N9 virus emerged and has caused 25 human infections. The HPAI H7N9 virus has some biological differences from the LPAI one, such as its multiple basic amino acid residues on HA leading to its independence on trypsin for replication. The pathogenicity of the HPAI H7N9 virus to experimental animals or humans is still unclear. A(H7N9) vaccine development for pandemic preparedness is ongoing, including the reassortment (H7N9/PR8) reverse genetic based vaccine, the virus like particle (VLP) vaccine, the intranasal live attenuated influenza vaccine (LAIV), the non-adjuvant Vero cell culture-derived inactivated whole-virus vaccine, the MDCK culture-derived vaccine, the H7 DNA vaccine and the recombinant replicative H7N9 virus (H7N9-53TM) vaccine. Five neuramidinase resistant sites of A(H7N9) virus isolated from patients have been reported. Some alternative drugs have been studied, such as DAS181 (Fludase), ribavirin, troglitazone and minocycline. Persistent surveillance and enhanced global control are essential to fight against human infections with A(H7N9) virus.  相似文献   

6.
The emergence of severe cases of human influenza A (H7N9) viral infection in China in the spring of 2003 resulted in a global effort to rapidly develop an effective candidate vaccine. In this study, a cold-adapted (ca), live attenuated monovalent reassortant influenza H7N9 virus (Ah01/AA ca) was generated using reverse genetics that contained hemagglutinin (HA) and neuraminidase (NA) genes from a 2013 pandemic A H7N9 isolate, A/Anhui/01/2013 virus (Ah01/H7N9); the remaining six backbone genes derived from the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AA virus). Ah01/AA ca virus exhibited temperature sensitivity (ts), ca, and attenuation (att) phenotypes. Intranasal immunization of female BALB/c mice with Ah01/AA ca twice at a 2-week interval induced robust humoral, mucosal, and cell-mediated immune responses in a dose-dependent manner. Furthermore, the candidate Ah01/AA ca virus was immunogenic and offered partial or complete protection of mice against a lethal challenge by the live 2013 influenza A H7N9 (A/Anhui/01/2013). Protection was demonstrated by the inhibition of viral replication and the attenuation of histopathological changes in the challenged mouse lung. Taken together, these data support the further evaluation of this Ah01/AA ca candidate vaccine in primates.  相似文献   

7.
A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of highly pathogenic (HP) A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (H2N2) virus. The reassortant H7N7 NL/03 ca vaccine virus was temperature sensitive and attenuated in mice, ferrets, and African green monkeys (AGMs). Intranasal (i.n.) administration of a single dose of the H7N7 NL/03 ca vaccine virus fully protected mice from lethal challenge with homologous and heterologous H7 viruses from Eurasian and North American lineages. Two doses of the H7N7 NL/03 ca vaccine induced neutralizing antibodies in serum and provided complete protection from pulmonary replication of homologous and heterologous wild-type H7 challenge viruses in mice and ferrets. One dose of the H7N7 NL/03 ca vaccine elicited an antibody response in one of three AGMs that was completely protected from pulmonary replication of the homologous wild-type H7 challenge virus. The contribution of CD8+ and/or CD4+ T cells to the vaccine-induced protection of mice was evaluated by T-cell depletion; T lymphocytes were not essential for the vaccine-induced protection from lethal challenge with H7 wt viruses. Additionally, passively transferred neutralizing antibody induced by the H7N7 NL/03 ca virus protected mice from lethality following challenge with H7 wt viruses. The safety, immunogenicity, and efficacy of the H7N7 NL/03 ca vaccine virus in mice, ferrets, and AGMs support the evaluation of this vaccine virus in phase I clinical trials.Highly pathogenic avian influenza (HPAI) is a disease of poultry that is caused by H5 or H7 avian influenza viruses and is associated with up to 100% mortality (2). Influenza A H7 subtype viruses from both Eurasian and North American lineages have resulted in more than 100 cases of human infection since 2002 in the Netherlands, Italy, Canada, the United Kingdom, and the United States. These cases include outbreaks of HPAI H7N7 virus in the Netherlands in 2003 that resulted in more than 80 cases of human infection and one fatality; HPAI H7N3 virus in British Columbia, Canada, in 2004 that resulted in two cases of conjunctivitis; a cluster of human infections of low-pathogenicity avian influenza (LPAI) H7N2 virus in the United Kingdom in 2007 that resulted in several cases of influenza-like illness and conjunctivitis; and a single case of respiratory infection in New York in 2003 (3-6, 17, 27).Due to an unprecedented geographic spread of H5 subtype viruses since 2003 and the continued occurrence of sporadic cases of H5N1 infections in humans, much emphasis has been placed on the pandemic threat posed by H5 subtype viruses. However, H7 subtype viruses also have significant pandemic potential. Humans are immunologically naïve to the H7 avian influenza viruses (16), and LPAI H7 subtype viruses circulating in domestic poultry and wild birds in Eurasia and North America have the potential to evolve and acquire an HP phenotype either by accumulating mutations or by recombination at the hemagglutinin (HA) cleavage site resulting in a highly cleavable HA that is a virulence motif in poultry (30, 33, 34). Recent work also suggests that contemporary North American lineage H7 subtype viruses, isolated in 2002 to 2003, are partially adapted to recognize α2-6-linked sialic acids, which are the receptors preferred by human influenza viruses and are preferentially found in the human upper respiratory tract (7). Moreover, coinfection and genetic reassortment of RNA genomes between H7 avian influenza viruses and human influenza viruses, including the seasonal H1N1 and H3N2 and pandemic H1N1 viruses, could result in the generation of reassortant viruses with the capacity to efficiently transmit among people and result in a pandemic. Domesticated birds may serve as important intermediate hosts for the transmission of wild-bird influenza viruses to humans, as may pigs, as evidenced by human infections with swine-origin 2009 pandemic H1N1 influenza virus throughout the world.Vaccination is the most effective method for the prevention of influenza. However, technical limitations result in delays in the rapid generation and availability of a strain-specific vaccine against an emerging pandemic virus. The emergence of antigenically distinct virus clades poses a substantial challenge for the design of vaccines against H5N1 viruses because of the possible need for clade-specific vaccines (1). Similar challenges are present for the generation of H7 subtype vaccine candidates, because antigenically distinct H7 subtype viruses, including North American lineage H7N2 and H7N3 and Eurasian lineage H7N7 and H7N3 viruses, have caused human disease. The successful control of H7 influenza virus in poultry has been achieved by stamping out and by vaccination of poultry (9). Vaccines for human use against both lineages of H7 influenza virus are under development, and candidate vaccines have been evaluated in preclinical and clinical studies (14, 23, 29, 42).We have previously analyzed the antigenic relatedness among H7 viruses from Eurasian and North American lineages using postinfection mouse and ferret sera (22). Among 10 H7 viruses tested, A/Netherlands/219/03 (H7N7) virus induced the most broadly cross-neutralizing antibodies (Abs) (22). Based on the phylogenetic relationships and its ability to induce broadly cross-neutralizing antibodies in mice and ferrets, we selected the A/Netherlands/219/03 (NL/03) (H7N7) virus from the Eurasian lineage for vaccine development. We used reverse genetics to generate a live attenuated cold-adapted (ca) H7N7 candidate vaccine virus bearing a modified HA, a wild-type (wt) neuraminidase (NA) gene from the NL/03 wt virus, and the six internal protein gene segments from the cold-adapted (ca) influenza A virus vaccine donor strain, A/Ann Arbor/6/60 ca (AA ca) (H2N2). The immunogenicity and protective efficacy against challenge with HP and LP H7 viruses from the Eurasian and North American lineages of the reassortant H7N7 NL03/AA ca vaccine virus were evaluated in mice, ferrets, and African green monkeys (AGMs).  相似文献   

8.
Under selective pressure from the host immune system, antigenic epitopes of influenza virus hemagglutinin (HA) have continually evolved to escape antibody recognition, termed antigenic drift. We analyzed the genomes of influenza A(H3N2) and A(H1N1)pdm09 virus strains circulating in Thailand between 2010 and 2014 and assessed how well the yearly vaccine strains recommended for the southern hemisphere matched them. We amplified and sequenced the HA gene of 120 A(H3N2) and 81 A(H1N1)pdm09 influenza virus samples obtained from respiratory specimens and calculated the perfect-match vaccine efficacy using the p epitope model, which quantitated the antigenic drift in the dominant epitope of HA. Phylogenetic analysis of the A(H3N2) HA1 genes classified most strains into genetic clades 1, 3A, 3B, and 3C. The A(H3N2) strains from the 2013 and 2014 seasons showed very low to moderate vaccine efficacy and demonstrated antigenic drift from epitopes C and A to epitope B. Meanwhile, most A(H1N1)pdm09 strains from the 2012–2014 seasons belonged to genetic clades 6A, 6B, and 6C and displayed the dominant epitope mutations at epitopes B and E. Finally, the vaccine efficacy for A(H1N1)pdm09 (79.6–93.4%) was generally higher than that of A(H3N2). These findings further confirmed the accelerating antigenic drift of the circulating influenza A(H3N2) in recent years.  相似文献   

9.
In the early 1970s, a human influenza A/Port Chalmers/1/73 (H3N2)-like virus colonized the European swine population. Analyses of swine influenza A (H3N2) viruses isolated in The Netherlands and Belgium revealed that in the early 1990s, antigenic drift had occurred, away from A/Port Chalmers/1/73, the strain commonly used in influenza vaccines for pigs. Here we show that Italian swine influenza A (H3N2) viruses displayed antigenic and genetic changes similar to those observed in Northern European viruses in the same period. We used antigenic cartography methods for quantitative analyses of the antigenic evolution of European swine H3N2 viruses and observed a clustered virus evolution as seen for human viruses. Although the antigenic drift of swine and human H3N2 viruses has followed distinct evolutionary paths, potential cluster-differentiating amino acid substitutions in the influenza virus surface protein hemagglutinin (HA) were in part the same. The antigenic evolution of swine viruses occurred at a rate approximately six times slower than the rate in human viruses, even though the rates of genetic evolution of the HA at the nucleotide and amino acid level were similar for human and swine H3N2 viruses. Continuous monitoring of antigenic changes is recommended to give a first indication as to whether vaccine strains may need updating. Our data suggest that humoral immunity in the population plays a smaller role in the evolutionary selection processes of swine H3N2 viruses than in human H3N2 viruses.  相似文献   

10.
H3N2 influenza viruses have now circulated in the human population for 43 years since the pandemic of 1968, accumulating sequence changes in the hemagglutinin (HA) and neuraminidase (NA) that are believed to be predominantly due to selection for escape from antibodies. Examination of mutations that persist and accumulate led to identification of antigenically significant mutations that are contained in five antigenic sites (A-E) mapped on to the H3 HA. In early H3N2 isolates, antigenic site A appeared to be dominant while in the 1990s site B seemed more important. To obtain experimental evidence for dominance of antigenic sites on modern H3 HAs, we have measured antibodies in plasma of human subjects who received the 2006-07 trivalent subunit influenza vaccine (H3 component A/Wisconsin/67/05) or the 2008-09 formulation (H3 component A/Uruguay/716/07). Plasmas were tested against expressed HA of Wisconsin-like influenza A/Oklahoma/309/06 and site-directed mutants in antigenic site A (NNES121-124ITEG, N126T, N133D, TSSS135-138GSNA, K140I, RSNNS142-146PGSG), and antigenic site B (HL156-157KS, KFK158-160GST, NDQI189-192QEQT, A196V). "Native ELISA" analysis and escape mutant selection with two human monoclonal antibodies demonstrated that antibody E05 binds to antigenic site A and 1_C02 binds to site B. We find that most individuals, after vaccination in seasons 2006-07 and/or 2008-09, showed dominance of antigenic site B recognition over antigenic site A. A minority showed dominance of site A in 2006 but these were reduced in 2008 when the vaccine virus had a site A mutation. A better understanding of immunodominance may allow prediction of future antigenic drift and assist in vaccine strain selection.  相似文献   

11.
Before 2003, only occasional case reports of human H7 influenza virus infections occurred as a result of direct animal-to-human transmission or laboratory accidents; most of these infections resulted in conjunctivitis. An increase in isolation of avian influenza A H7 viruses from poultry outbreaks and humans has raised concerns that additional zoonotic transmissions of influenza viruses from poultry to humans may occur. To better understand the pathogenesis of H7 viruses, we have investigated their ability to cause disease in mouse and ferret models. Mice were infected intranasally with H7 viruses of high and low pathogenicity isolated from The Netherlands in 2003 (Netherlands/03), the northeastern United States in 2002-2003, and Canada in 2004 and were monitored for morbidity, mortality, viral replication, and proinflammatory cytokine production in respiratory organs. All H7 viruses replicated efficiently in the respiratory tracts of mice, but only Netherlands/03 isolates replicated in systemic organs, including the brain. Only A/NL/219/03 (NL/219), an H7N7 virus isolated from a single fatal human case, was highly lethal for mice and caused severe disease in ferrets. Supporting the apparent ocular tropism observed in humans following infection with viruses of the H7 subtype, both Eurasian and North American lineage H7 viruses were detected in the mouse eye following ocular inoculation, whereas an H7N2 virus isolated from the human respiratory tract was not. Therefore, in general, the relative virulence and cell tropism of the H7 viruses in these animal models correlated with the observed virulence in humans.  相似文献   

12.
H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.  相似文献   

13.
The unpredictable nature of pandemic influenza and difficulties in early prediction of pandemic potential of new isolates present a major challenge for health planners. Vaccine manufacturers, in particular, are reluctant to commit resources to development of a new vaccine until after a pandemic is declared. We hypothesized that a structural bioinformatics approach utilising homology-based molecular modelling and docking approaches would assist prediction of pandemic potential of new influenza strains alongside more traditional laboratory and sequence-based methods. The newly emerged Chinese A/Hangzhou/1/2013 (H7N9) influenza virus provided a real-life opportunity to test this hypothesis. We used sequence data and a homology-based approach to construct a 3D-structural model of H7-Hangzhou hemagglutinin (HA) protein. This model was then used to perform docking to human and avian sialic acid receptors to assess respective binding affinities. The model was also used to perform docking simulations with known neutralizing antibodies to assess their ability to neutralize the newly emerged virus. The model predicted H7N9 could bind to human sialic acid receptors thereby indicating pandemic potential. The model also confirmed that existing antibodies against the HA head region are unable to neutralise H7N9 whereas antibodies, e.g. Cr9114, targeting the HA stalk region should bind with high affinity to H7N9. This indicates that existing stalk antibodies initially raised against H5N1 or other influenza A viruses could be therapeutically beneficial in prevention and/or treatment of H7N9 infections. The subsequent publication of the H7N9 HA crystal structure confirmed the accuracy of our in-silico structural model. Antibody docking studies performed using the H7N9 HA crystal structure supported the model''s prediction that existing stalk antibodies could cross-neutralise the H7N9 virus. This study demonstrates the value of using in-silico structural modelling approaches to complement physical studies in characterization of new influenza viruses.  相似文献   

14.
克隆、表达和鉴定禽流感病毒H9N2 HA,NA基因序列,为制备抗体和基因工程疫苗打下基础。在成功克隆禽流感病毒H9N2全长HA、NA基因并测序的基础上,将部分基因序列克隆到表达载体pET32a(+)上,全基因序列克隆到表达载体pGEX4T-1上,构建了重组表达质粒pET32a(+)/HA(截短)、pET32a(+)/NA(截短)、pGEX4T-1/HA、pGEX4T-1/NA,转化大肠杆菌BL21/rosetta,IPTG诱导表达,利用Ni2+亲和层析柱和GSTrap4B亲和层析柱对重组蛋白进行纯化,并用Western Blotting和ELISA方法检测其抗原性。结果重组蛋白在大肠杆菌中可以高效表达,SDS-PAGE显示其相对分子质量与预计大小一致。ELISA和Western Blotting实验证实,重组蛋白具有良好的抗原性。本研究成功克隆和表达了禽流感病毒H9N2 HA、NA基因序列。为禽流感病毒H9N2诊断试剂和疫苗的开发等进一步的研究奠定了基础。  相似文献   

15.
流感病毒表面抗原血凝素( hemagglutinin,HA)是流感核酸疫苗重要的靶抗原,针对HA的保护性中和抗体主要由HA上的五个抗原表位诱导产生.在本文中,我们构建了一种以新甲型H1N1流感病毒HA1为骨架的含2个A/PR/8( H1N1)流感病毒HA抗原表位和3个新甲型H1N1流感病毒HA抗原表位的核酸疫苗,并在B...  相似文献   

16.
Avian-origin influenza A (H7N9) viruses emerged as human pathogens in China in early 2013 and have killed >100 persons. Influenza vaccines are mainly manufactured using egg-based technology which could not meet the surging demand during influenza pandemics. In this study, we evaluated cell-based influenza H7N9 vaccines in ferrets. An egg-derived influenza H7N9 reassortant vaccine virus was adapted in MDCK cells. Influenza H7N9 whole virus vaccine antigen was manufactured using a microcarrier-based culture system. Immunogenicity and protection of the vaccine candidates with three different formulations (300μg aluminum hydroxide, 1.5μg HA, and 1.5μg HA plus 300μg aluminum hydroxide) were evaluated in ferrets. In ferrets receiving two doses of vaccination, geometric mean titers of hemagglutination (HA) inhibition and neutralizing antibodies were <10 and <40 for the control group (adjuvant only), 17 and 80 for the unadjuvanted (HA only) group, and 190 and 640 for the adjuvanted group (HA plus adjuvant), respectively. After challenge with wild-type influenza H7N9 viruses, virus titers in respiratory tracts of the adjuvanted group were significantly lower than that in the control, and unadjuvanted groups. MDCK cell-derived influenza H7N9 whole virus vaccine candidate is immunogenic and protective in ferrets and clinical development is highly warranted.  相似文献   

17.
The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?  相似文献   

18.
用8质粒病毒拯救系统产生H9N2/WSN重组A型流行性感冒病毒   总被引:9,自引:0,他引:9  
把禽流行性感冒(流感)病毒A/Chicken/Shanghai/F/98(H9N2)的血凝素(HA)和神经氨酸酶(NA)基因cDNA克隆至polⅠ-pol Ⅱ双向转录和表达载体pHW2000,用这两种质粒与8质粒病毒拯救系统中流感病毒A/WSN/33(H1N1)6个内部基因cDNA的质粒组合(6 2重排),共转染COS-1细胞,产生了能在鸡胚中高滴度增殖的H9N2/、WSN重组病毒。用A/WSN/33的8个基因cDNA质粒作对照,也产生了转染子病毒。经过EID50测定和MDCK感染实验,新基因型H9N2/WSN病毒感染鸡胚的能力强(EID50为10^-11/0.2m1),而且对鸡胚的毒力弱,在不加胰酶的情况下不使MDCK细胞产牛病变。经电镜观察,两个转染子病毒的形态与野生型流感病毒相似。反向遗传操作技术的建立,为对禽流感病毒基因功能和疫苗构建等方面的研究提供了新的手段。  相似文献   

19.
CY Wu  YC Yeh  JT Chan  YC Yang  JR Yang  MT Liu  HS Wu  PW Hsiao 《PloS one》2012,7(8):e42363
The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA(2) after viral infection. As a result, H5M2eN1-VLP vaccination elicited a broad humoral immune response against multiple viral proteins and caused significant protection against homologous RG-14 (H5N1) and heterologous A/California/07/2009 H1N1 (CA/07) and A/PR/8/34 H1N1 (PR8) viral lethal challenges. Moreover, the N1-VLP (lacking HA) induced production of a strong NA antibody that also conferred significant cross protection against H5N1 and heterologous CA/07 but not PR8, suggesting the protection against N1-serotyped viruses can be extended from avian-origin to CA/07 strain isolated in humans, but not to evolutionally distant strains of human-derived. By comparative vaccine study of an HA-based VLP (H5N1-VLP) and NA-based VLPs, we found that H5N1-VLP vaccination induced specific and strong protective antibodies against the HA(1) subunit of H5, thus restricting the breadth of cross-protection. In summary, we present a feasible example of direction of VLP vaccine immunity toward NA and HA(2), which resulted in cross protection against both seasonal and pandemic influenza strains, that could form the basis for future design of a better universal vaccine.  相似文献   

20.
In Hong Kong in 1997, a highly lethal H5N1 avian influenza virus was apparently transmitted directly from chickens to humans with no intermediate mammalian host and caused 18 confirmed infections and six deaths. Strategies must be developed to deal with this virus if it should reappear, and prospective vaccines must be developed to anticipate a future pandemic. We have determined that unadapted H5N1 viruses are pathogenic in mice, which provides a well-defined mammalian system for immunological studies of lethal avian influenza virus infection. We report that a DNA vaccine encoding hemagglutinin from the index human influenza isolate A/HK/156/97 provides immunity against H5N1 infection of mice. This immunity was induced against both the homologous A/HK/156/97 (H5N1) virus, which has no glycosylation site at residue 154, and chicken isolate A/Ck/HK/258/97 (H5N1), which does have a glycosylation site at residue 154. The mouse model system should allow rapid evaluation of the vaccine’s protective efficacy in a mammalian host. In our previous study using an avian model, DNA encoding hemagglutinin conferred protection against challenge with antigenic variants that differed from the primary antigen by 11 to 13% in the HA1 region. However, in our current study we found that a DNA vaccine encoding the hemagglutinin from A/Ty/Ir/1/83 (H5N8), which differs from A/HK/156/97 (H5N1) by 12% in HA1, prevented death but not H5N1 infection in mice. Therefore, a DNA vaccine made with a heterologous H5 strain did not prevent infection by H5N1 avian influenza viruses in mice but was useful in preventing death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号