首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While artificial farmland drainage has allowed the development of a highly productive agriculture, the availability of periodically flooded arable land as a niche habitat for a broad range of animal and vascular plant species has diminished. Accordingly, many species depending on temporary wetlands are endangered, already extinct or extirpated in Switzerland and other European countries. Some arable fields with temporary pools can still be observed in Switzerland. However, it is not known how suitable such small temporary ponds are as habitats in the modern, intensively-managed agricultural landscape, where disturbance rates are high, and connecting wetland habitats are scarce. We surveyed 120 fields across 10 hot spot regions for potential waterlogging in Switzerland, investigating the effect of temporary waterlogging on the diversity of arable plant and ground beetle species. Half of the fields were heavily influenced by waterlogging, while the other half represented conventional crop field controls. We found that wet fields exhibited a higher number of vascular plant and carabid species on average compared to control fields. This difference was explained by the presence of more hygrophilic plant and ground beetle species on wet fields. While we did find more hygrophilic species on wet fields, the threatened character species of temporary wetland habitats were mostly absent despite availability in regional species pools. These results suggest that temporary pools still provide the raw environmental characteristics that hygrophilic species require in the agricultural landscape. However, alternative management schemes are required to transform them into habitats that can effectively support high-priority, threatened species of temporary wetlands.  相似文献   

2.
Aim Species richness in itself is not always sufficient to evaluate land management strategies for nature conservation. The exchange of species between local communities may be affected by landscape structure and land‐use intensity. Thus, species turnover, and its inverse, community similarity, may be useful measures of landscape integrity from a diversity perspective. Location A European transect from France to Estonia. Methods We measured the similarity of plant, bird, wild bee, true bug, carabid beetle, hoverfly and spider communities sampled along gradients in landscape composition (e.g. total availability of semi‐natural habitat), landscape configuration (e.g. fragmentation) and land‐use intensity (e.g. pesticide loads). Results Total availability of semi‐natural habitats had little effect on community similarity, except for bird communities, which were more homogeneous in more natural landscapes. Bee communities, in contrast, were less similar in landscapes with higher percentages of semi‐natural habitats. Increased landscape fragmentation decreased similarity of true bug communities, while plant communities showed a nonlinear, U‐shaped response. More intense land use, specifically increased pesticide burden, led to a homogenization of bee, bug and spider communities within sites. In these cases, habitat fragmentation interacted with pesticide load. Hoverfly and carabid beetle community similarity was differentially affected by higher pesticide levels: for carabid beetles similarity decreased, while for hoverflies we observed a U‐shaped relationship. Main conclusions Our study demonstrates the effects of landscape composition, configuration and land‐use intensity on the similarity of communities. It indicates reduced exchange of species between communities in landscapes dominated by agricultural activities. Taxonomic groups differed in their responses to environmental drivers and using but one group as an indicator for ‘biodiversity’ as such would thus not be advisable.  相似文献   

3.
Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.  相似文献   

4.
Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland‐dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free‐standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed‐effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White‐striped free‐tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands that maximize conservation outcomes for urban bats and possibly other wetland‐dependent and nocturnal fauna.  相似文献   

5.
Turloughs are groundwater dependent grazed wetlands of conservation importance that occur in limestone depressions in the karst landscape, mostly in the west of Ireland. Data on Carabidae, hydrological regime, soils and management (using grazing exclosures) were collected to assess the effects of both hydrological regime and grazing management on ground beetles of Skealoghan turlough. Distinct ground beetle communities have been found associated with different hydrological regimes with carabid beetle community composition sensitive to both changes in hydrological regime and vegetation structure. The hydrological regime is the primary factor controlling the carabid species composition of this grazed wetland. Grazing, particularly selective grazing by animals plays an important but subordinate role to hydrology in providing suitable habitat conditions for many species of conservation importance. This paper provides a detailed assessment of species responses to wetland management and demonstrates the need to maintain a range of hydrological and grazing regimes.  相似文献   

6.
7.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

8.
Aim This study tests the hypothesis that linear, woody habitat patches surrounding small, sunken rural roads not only function as an unstable sink but also as a true, sustainable habitat for forest plants. Furthermore, factors affecting the presence of forest plant species in sunken roads are determined. Finally, the implications of these findings for the overall metapopulation dynamics of forest plant species in fragmented agricultural landscapes are assessed. Location The study area, c. 155 km2 in size, is situated in a fragmented agricultural landscape within the loamy region of central Belgium. Methods Forest species presence–absence data were collected for 389 sunken roads. The effect of area, depth, age and isolation on sunken road species richness was assessed using linear regression and analysis of variance (anova ). Analysis of covariance was employed to study the interaction between age and isolation. Differences in plant community dispersal spectra in relation to sunken road age and isolation were analysed by means of linear regression and anova . Results Sunken roads proved to function as an important habitat for forest plants. The sink‐hypothesis was falsified by a clear species accumulation in time: sunken road species richness significantly increased with the age of the elements. Sunken road age mainly affected species richness through effects on both area and depth, affecting habitat quality and diversity. Furthermore, sunken road isolation had a significant impact on species richness as well, with the number of forest species decreasing with increasing isolation of the elements, indicating dispersal limitation in sunken road habitats. Moreover, a significant age × isolation interaction effect was demonstrated. Differences in regression slopes for isolation between age classes revealed that the effect of isolation intensified with increasing age of the elements. Differential colonization in relation to forest species dispersal capacities probably account for this, as confirmed by the analysis of sunken road plant community dispersal spectra, with the fraction of species with low dispersal capacities increasing with increasing age and decreasing isolation of the elements. Main conclusions During sunken road development, area and depth increase and, gradually, suitable habitat conditions for forest plant species arise. Depending on their ecological requirements and dispersal capacities, forest species progressively colonize these habitats as a function of the element's isolation. The functioning of sunken roads as a sustainable habitat for forest species enhances the metapopulation viability of forest plants in agricultural landscapes and has important consequences for forest restoration practices. Moreover, the results of this work call for integrating the presence of forest species in small‐scaled linear habitat patches in forest fragmentation studies.  相似文献   

9.
Different management regimes imposed on similar habitat types provide opportunities to investigate mechanisms driving community assembly and changes in species composition. We investigated the effect of pasture management on vegetation composition in wetlands with varying spatial isolation on a Florida cattle ranch. We hypothesized that increased pasture management intensity would dampen the expected negative effect of wetland isolation on native species richness due to a change from dispersal‐driven community assembly to niche‐driven assembly by accentuated environmental tolerance. We used native plant richness, exotic plant richness and mean coefficient of conservatism (CC) to assess wetland plant assemblage composition. Sixty wetlands were sampled, stratified by three levels of isolation across two pasture management intensities; semi‐native (less intensely managed; mostly native grasses, never fertilized) and agronomically improved (intensely managed, planted with exotic grasses, and fertilized). Improved pasture wetlands had lower native richness and CC scores, and greater total soil phosphorus and exotic species coverage compared to semi‐native pasture wetlands. Increased wetland isolation was significantly associated with decreases in native species richness in semi‐native pasture wetlands but not in improved pasture wetlands. Additionally, the species–area relationship was stronger in wetlands in improved pastures than semi‐native pastures. Our results indicate that a) native species switch from dispersal‐based community assembly in semi‐native pastures to a species‐sorting process in improved pastures, and b) recently‐introduced exotic species already sorted for more intensive management conditions are primarily undergoing dispersal‐based community assembly. That land‐use may alter the relative importance of assembly processes and that different processes drive native and exotic richness has implications for both ecosystem management and restoration planning.  相似文献   

10.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

11.
Brose U 《Oecologia》2003,135(3):407-413
Two hypotheses of bottom-up control that predict that the species richness of Carabidae will depend either on the taxonomic diversity of plants ("taxonomic diversity hypothesis") or on the structural heterogeneity of the vegetation ("structural heterogeneity hypothesis") were tested. Plant species were classified into nine plant structural groups through cluster analysis of morphological traits (e.g. total height) at 30 early successional temporary wetlands in the east-German agricultural landscape. In a linear regression analysis, the heterogeneity of vegetation structures explained 55% of the variation in carabid beetle diversity. According to a partial correlation analysis, plant taxonomic diversity did not have a significant effect, consistent with the "structural heterogeneity hypothesis," and contradicting previous studies which concluded that plant taxonomic diversity would be the most important factor in early successional habitats. An experimental study was used to test hypotheses on the processes underlying this bottom-up control by vegetation structure: the "hunting efficiency hypothesis," the "enemy-free space hypothesis," and the "microhabitat specialization hypothesis." The composition of plant structural groups in 15 vegetation plots (1 m(2)) was manipulated, creating a gradient from dense vegetation to open plots. Subsequent pitfall catches revealed significant differences in the activity-abundances of the carabid species. Large species preferred dense vegetation plots, consistent with the enemy-free space hypothesis that large species are more vulnerable to predation on the open plots and prefer dense vegetation to escape from natural enemies. The results indicate that bottom-up control is not mediated only by plant taxonomic or functional group diversity and that vegetation structures may be more important than previously suggested.  相似文献   

12.
The effects of habitat fragmentation may include the loss of species from isolated fragments or changes in species abundances among habitats that differ in area, structure, or edge characteristics. We measured the species richness and abundance of ground‐dwelling insects in a 1.14‐ha old field that was mowed to produce patches of unmowed vegetation which differed in size, degree of isolation, and the amount of habitat edge. Four treatments – ranging from unfragmented (169‐m2) to highly fragmented (1‐m2) patches – were replicated four times in a Latin square design, and insects were sampled twice during 1995 using 177 pitfall traps. Species richness showed a non‐monotonic response to fragmentation, with the fewest species occurring in the slightly fragmented treatment. Responses of rove beetles and ants, the most species‐rich and abundant taxa, respectively, were similar to the overall insect community but ants had a stronger and more consistent treatment effect in both sample months. Ordinations of ant and rove‐beetle assemblages using nonmetric multidimensional scaling showed that the slightly fragmented treatment differed from other treatments in species occurrence and abundance. The lower species richness in the slightly fragmented treatment was primarily due to a subset of ant and rove beetle species that showed a lower abundance than in other treatments, possibly because this treatment had the greatest amount of habitat edge. We hypothesize that the non‐monotonic species response to fragmentation was due to the differential effects of habitat edge on species movements across the habitat boundary between unmowed patches and mowed areas. A greater effect due to the amount of habitat edge rather than total patch area, at least among the range of patch sizes studied, suggests that the length of habitat edge may be quite important to the distribution and abundance of ground‐dwelling animals in fragmented habitats.  相似文献   

13.
  1. Habitat loss leading to smaller patch sizes and decreasing connectivity is a major threat to global biodiversity. While some species vanish immediately after a change in habitat conditions, others show delayed extinction, that is, an extinction debt. In case of an extinction debt, the current species richness is higher than expected under present habitat conditions.
  2. We investigated wetlands of the canton of Zürich in the lowlands of Eastern Switzerland where a wetland loss of 90% over the last 150 years occurred. We related current species richness to current and past patch area and connectivity (in 1850, 1900, 1950, and 2000). We compared current with predicted species richness in wetlands with a substantial loss in patch area based on the species‐area relationship of wetlands without substantial loss in patch area and studied relationships between the richness of different species groups and current and historical area and connectivity of wetland patches.
  3. We found evidence of a possible extinction debt for long‐lived wetland specialist vascular plants: in wetlands, which substantially lost patch area, current species richness of long‐lived specialist vascular plants was higher than would have been expected based on current patch area. Additionally and besides current wetland area, historical area also explained current species richness of these species in a substantial and significant way. No evidence for an extinction debt in bryophytes was found.
  4. The possible unpaid extinction debt in the wetlands of the canton of Zürich is an appeal to nature conservation, which has the possibility to prevent likely future extinctions of species through specific conservation measures. In particular, a further reduction in wetlands must be prevented and restoration measures must be taken to increase the number of wetlands.
  相似文献   

14.
In a fragmented landscape,transitional zones between neighboring habitats are common,and our understanding of community organizational forces across such habitats is important.Edge studies are numerous,but the majority of them utilize information on species richness and abundance.Abundance and taxonomic diversity,however,provide little information on the functioning and phylogeny of the co-existing species.Combining the evaluation of their functional and phylogenetic relationships,we aimed to assess whether ground beetle assemblages are deterministically or stochastically structured along grassland-forest gradients.Our results showed different community assembly rules on opposite sides of the forest edge.In the grassland,co-occurring species were functionally and phylogenetically not different from the random null model,indicating a random assembly process.Contrary to this,at the forest edge and the interior,co-occurring species showed functional and phylogenetic clustering,thus environmental filtering was the likely process structuring carabid assemblages.Community assembly in the grassland was considerably affected by asymmetrical species flows (spillover)across the forest edge:more forest species penetrated into the grassland than open-habitat and generalist species entered into the forest.This asymmetrical species flow underlines the importance of the filter function of forest edges.As unfavorable,human-induced changes to the structure,composition and characteristics of forest edges may alter their filter function,edges have to be specifically considered during conservation management.  相似文献   

15.
Rethinking patch size and isolation effects: the habitat amount hypothesis   总被引:4,自引:0,他引:4  
I challenge (1) the assumption that habitat patches are natural units of measurement for species richness, and (2) the assumption of distinct effects of habitat patch size and isolation on species richness. I propose a simpler view of the relationship between habitat distribution and species richness, the ‘habitat amount hypothesis’, and I suggest ways of testing it. The habitat amount hypothesis posits that, for habitat patches in a matrix of non‐habitat, the patch size effect and the patch isolation effect are driven mainly by a single underlying process, the sample area effect. The hypothesis predicts that species richness in equal‐sized sample sites should increase with the total amount of habitat in the ‘local landscape’ of the sample site, where the local landscape is the area within an appropriate distance of the sample site. It also predicts that species richness in a sample site is independent of the area of the particular patch in which the sample site is located (its ‘local patch’), except insofar as the area of that patch contributes to the amount of habitat in the local landscape of the sample site. The habitat amount hypothesis replaces two predictor variables, patch size and isolation, with a single predictor variable, habitat amount, when species richness is analysed for equal‐sized sample sites rather than for unequal‐sized habitat patches. Studies to test the hypothesis should ensure that ‘habitat’ is correctly defined, and the spatial extent of the local landscape is appropriate, for the species group under consideration. If supported, the habitat amount hypothesis would mean that to predict the relationship between habitat distribution and species richness: (1) distinguishing between patch‐scale and landscape‐scale habitat effects is unnecessary; (2) distinguishing between patch size effects and patch isolation effects is unnecessary; (3) considering habitat configuration independent of habitat amount is unnecessary; and (4) delineating discrete habitat patches is unnecessary.  相似文献   

16.
《Acta Oecologica》2002,23(6):361-374
Oribatid mite and Carabid beetle communities were investigated at five sites in the ‘Pietraporciana’ and ‘Lucciolabella’ Nature Reserves (central Italy). In this part of southern Tuscany many attempts have been made to encourage the regeneration of native habitats and to preserve existing ones. Human-induced changes in the original forest landscape have had a direct impact on mite and carabid populations. Significant differences in species diversity and abundance among different sites were revealed throughout the sampling period. Species richness, abundance and diversity of oribatid mites decrease from woodland sites to open habitats where evenness was high. There is an inverse trend between the number of species and richness of carabid beetles and those of oribatid mites. Canonical correspondence analysis (CCA) of oribatid and carabid beetle compositions discriminated the sites, demonstrating how even small areas with different vegetation, composition, structure, environment and microclimate were characterised by distinct edaphic populations.  相似文献   

17.
Questions: Two hypotheses were tested: (1) physical features, such as wetland surface area and habitat diversity, together with water chemistry, are important determinants of species richness and composition of macrophyte assemblages and (2) species richness and composition of macrophyte assemblages differ between wetlands of different types (i.e., palustrine versus lacustrine) and between wetlands of different hydrologies (i.e. permanent versus intermittent). Location: A subtropical coastal plain segment (2500 km2) of southern Brazil. Methods: Quarterly collections were carried out in 15 wetlands (2004–2005) in southern Brazil. Differences in richness over time were tested using repeated measures ANOVA. Stepwise multiple regression was performed to investigate relationships between total richness and environmental variables. Significance of differences between wetland types and hydroperiods on species composition was verified by MRPP (Multi‐Response Permutation Procedure). The influence of the environmental variables on species composition was assessed using CCA (Canonical Correspondence Analysis). Results: Macrophyte species richness changed with time, was not significantly different between wetland types, but was higher in permanent wetlands than in intermittent ones. Area, habitat diversity and soluble reactive phosphorus concentration explained 76% of the variation in species richness. Species composition was different between permanent and intermittent wetlands, although it was not significantly different between wetland types. Area, habitat diversity and water chemistry explained 50.1% of species composition. Conclusions: Species richness and composition of wetland macrophytes were mainly determined by area, habitat diversity and hydroperiod. These results can be used for the development of conservation and management programs in southern Brazil.  相似文献   

18.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

19.
  • 1 The influence of within‐field position and adjoining habitat on carabid beetles was studied in 20 winter wheat fields in ten different Swiss agricultural landscapes. In each landscape, two winter wheat fields (one with adjoining sown wildflower area and one with adjoining grassy margin) were investigated.
  • 2 Carabid beetles were caught in pitfall traps 3 and 30 m from the edge in each of the 20 wheat fields. Significantly more individuals were found in the centres (30‐m position) than at the edges (3‐m position). Conversely, species richness was significantly higher at the field edges than in the centres.
  • 3 Of the ten most abundant species, Poecilus cupreus, Agonum muelleri and Pterostichus melanarius were significantly more abundant in the field centres than at the edges. Harpalus rufipes was significantly more abundant in the fields adjoining sown wildflower areas than in the fields adjoining grassy margins.
  • 4 In conclusion, the response of carabid beetles to within‐field position and adjoining habitats was species specific. This needs to be taken into account in habitat management for biodiversity conservation and pest control.
  相似文献   

20.
ABSTRACT Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号