首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Abstract. Plants associated with traditional agricultural landscapes in northern Europe and Scandinavia are subjected to drastic habitat fragmentation. In this paper we discuss species response to fragmentation, against a background of vegetation and land‐use history. Recent evidence suggests that grassland‐forest mosaics have been prevalent long before the onset of human agriculture. We suggest that the creation of infield meadows and outland grazing (during the Iron Age) increased the amount and spatial predictability of grasslands, resulting in plant communities with exceptionally high species densities. Thus, distribution of plant species in the present‐day landscape reflects historical land‐use. This holds also when traditional management has ceased, due to a slow response by many species to abandonment and fragmentation. The distribution patterns are thus not in equilibrium with the present habitat distribution. Fragmentation influences remaining semi‐natural grasslands such that species density is likely to decline as a result of local extinctions and invasion by habitat generalists. However, species that for a long time have been subjected to changing mosaic landscapes may be more resistant to fragmentation than is usually believed. Conservation should focus not only on ‘hot‐spots’ with high species richness, but also consider species dynamics in a landscape context.  相似文献   

2.
Carabid beetle assemblages were studied to assess how diversity and community structure varied along a gradient of land-use. This gradient was composed of six 1 km2 quadrats with an increasing proportion of agricultural land reflecting the anthropogenic fragmentation and intensification of landscapes. Carabid species richness and abundance was predicted to peak in the most heterogeneous landscape, in accord with the intermediate disturbance hypothesis (IDH), and then decline as agricultural intensification increased. It was also predicted that the different landscapes would support beetle communities distinct from each other. The IDH was unsupported-in both years of this study carabid species richness and abundance was greatest in the most intensively managed, agricultural sites. Detrended correspondence analysis revealed a clear separation in beetle community structure between forested and open habitats and between different forest types. Canonical correspondence analysis revealed a significant correlation between beetle community structure and the environment, showing distinct beetle assemblages to be significantly associated with specific edaphic and botanical features of the land-use gradient. This study adds to increasing evidence that landscape-scale patterns in land-use significantly affect beetle community structure producing distinct assemblages.  相似文献   

3.
Island biogeography of temporary wetland carabid beetle communities   总被引:4,自引:0,他引:4  
Aim The study tests if island biogeography is applicable to invertebrate communities of habitat islands in the agricultural landscape that are not fragments of formerly larger habitats. Location Thirty temporary wetlands in the agricultural landscape of northeast Germany. Methods The composition and species richness of carabid beetle communities was analysed. Habitat area, isolation, the density of temporary wetlands in the landscape, land‐use intensity and the maximum duration of flooding were recorded as independent variables. Overall species richness and wetland species richness were studied in independent regression analyses. The community composition was analysed by means of a Canonical Correspondence Analysis (CCA). A partial CCA was used to analyse the effect of the distance to the edge of the field after removing impacts of other independent variables. Results The area of the habitats and various measures of isolation (mean distances = 81–240 m) did not influence species richness or wetland species richness. The community composition was mainly determined by the land‐use intensity, habitat area did not have significant effects, and the distance to the edge of the field was the only effective isolation parameter. Short‐winged species were more often affected by the distance to the edge of the field than full‐winged species. Main conclusion There is evidence that the distances between the wetlands do not provide an effective barrier to the species dispersal and, therefore, metapopulation structures including subpopulations of multiple temporary wetlands might counteract local area effects on subpopulations. Short‐winged species, however, might be more affected by isolation than full‐winged species. As carabid beetle community structure in most early successional habitats is similar, these results may be representative of many agricultural landscape habitats. Nature conservancy concepts that aim to increase habitat area and habitat connectivity have successfully been applied to fragmented late‐successional habitats. The present study indicates that such concepts do not necessarily result in higher diversity or larger populations in early successional habitats.  相似文献   

4.
Humans are changing the biosphere by exerting pressure on land via different land uses with variable intensities. Quantifying the relative importance of the land‐use composition and intensity for communities may provide valuable insights for understanding community dynamics in human‐dominated landscapes. Here, we evaluate the relative importance of the land‐use composition versus land‐use intensity on the bird community structure in the highly human‐dominated region surrounding Paris, France. The land‐use composition was calculated from a land cover map, whereas the land‐use intensity (reverse intensity) was represented by the primary productivity remaining after human appropriation (NPPremaining), which was estimated using remote sensing imagery. We used variance partitioning to evaluate the relative importance of the land‐use composition versus intensity for explaining bird community species richness, total abundance, trophic levels, and habitat specialization in urban, farmland, and woodland habitats. The land‐use composition and intensity affected specialization and richness more than trophic levels and abundance. The importance of the land‐use intensity was slightly higher than that of the composition for richness, specialization, and trophic levels in farmland and urban areas, while the land‐use composition was a stronger predictor of abundance. The intensity contributed more to the community indices in anthropogenic habitats (farmland and urban areas) than to those in woodlands. Richness, trophic levels, and specialization in woodlands tended to increase with the NPPremaining value. The heterogeneity of land uses and intensity levels in the landscape consistently promoted species richness but reduced habitat specialization and trophic levels. This study demonstrates the complementarity of NPPremaining to the land‐use composition for understanding community structure in anthropogenic landscapes. Our results show, for the first time, that the productivity remaining after human appropriation is a determinant driver of animal community patterns, independent of the type of land use.  相似文献   

5.
Local species richness of butterflies can be expected to benefit from both local habitat properties as well as the availability of suitable habitats and source populations in the surrounding landscape. Whether local species richness is dependent on local or landscape factors can be assessed by examining the relationship between local and landscape species richness. Here we studied how local species richness is related to landscape‐level species richness in landscapes differing in agricultural intensity. The relationship was linear for field boundaries in intensively cultivated landscapes and non‐linear in less‐intensively cultivated landscapes. In landscapes containing semi‐natural grasslands (on average 4% of overall land‐use), the relationship was non‐linear for field boundaries, but linear when considering local species richness of the grasslands themselves. These results show that local factors are more important than landscape factors in determining local species richness in landscapes which contained semi‐natural grasslands. Local species richness was limited by landscape factors in intensively cultivated landscapes. This interpretation was supported by the relationship between local species richness and landscape‐scale average mobility and generalist percentage of butterfly assemblages. We conclude that the management of field boundary habitat quality for butterflies is expected to be most effective in landscapes with semi‐natural grasslands, the species composition of which in turn is dependent on the regional occurrence of grasslands. Based on our results, managing non‐crop habitats for the conservation of habitat specialists and species with poor mobility will be most efficient in regions where patches of semi‐natural grasslands occur.  相似文献   

6.
Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.  相似文献   

7.
Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km2 region, and analyzed bee abundance, species richness, composition, and life‐history traits. Season‐long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life‐history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales.  相似文献   

8.
The goal of the present study is to assess how landscape configuration influenced the distribution of life-history traits across bird, carabid beetle and butterfly communities of mosaic forest landscapes in south-western France. A set of 12 traits was selected for each species, characterizing rarity, biogeographical distribution, body size, trophic guild, dispersal power, reproductive potential and phenology. We used a three-table ordination method, RLQ analysis, to link directly bird, beetle and butterfly traits to the same set of landscape metrics calculated in 400 m-radius buffers around sample points. RLQ analyses showed significant associations between life-history traits and landscape configuration for all three taxonomical groups. Threatened species from all groups were characterized by a combination of life traits that makes them especially sensitive to the fragmentation of herbaceous and shrub-dominated habitats at the landscape scale. These key life traits were low productivity, intermediate body mass, restricted geographic range, late phenology and ground gleaning for threatened birds, intermediate body size, spring adult activity, northern distribution and summer breeding period for threatened carabids, and restricted range, overwintering as eggs or larvae, low mobility, monophagy and short flight periods for threatened butterflies. Focusing on species life traits can provide a functional perspective, which helps to determine adequate measures for the conservation of threatened species and communities of several taxonomical groups in mosaic landscapes.  相似文献   

9.
With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape (‘land‐sharing’ agriculture) or a few large contiguous blocks alongside intensive farmland (‘land‐sparing’ agriculture). In this study, we are the first to integrate carbon storage alongside multi‐taxa biodiversity assessments to compare land‐sparing and land‐sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó‐Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land‐sparing strategies would be more beneficial for both carbon storage and biodiversity than land‐sharing strategies across a range of production levels. Biodiversity benefits of land‐sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land‐sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem services will be necessary to fully understand the links between land‐allocation strategies and long‐term ecosystem service provision.  相似文献   

10.
Tropical ecosystems are globally important for bird diversity. In many tropical regions, land‐use intensification has caused conversion of natural forests into human‐modified habitats, such as secondary forests and heterogeneous agricultural landscapes. Despite previous research, the distribution of bird communities in these forest‐farmland mosaics is not well understood. To achieve a comprehensive understanding of bird diversity and community turnover in a human‐modified Kenyan landscape, we recorded bird communities at 20 sites covering the complete habitat gradient from forest (near natural forest, secondary forest) to farmland (subsistence farmland, sugarcane plantation) using point counts and distance sampling. Bird density and species richness were on average higher in farmland than in forest habitats. Within forest and farmland, bird density and species richness increased with vegetation structural diversity, i.e., were higher in near natural than in secondary forest and in subsistence farmland than in sugarcane plantations. Bird communities in forest and farmland habitats were very distinct and very few forest specialists occurred in farmland habitats. Moreover, insectivorous bird species declined in farmland habitats whereas carnivores and herbivores increased. Our study confirms that tropical farmlands can hardly accommodate forest specialist species. Contrary to most previous studies, our findings show that structurally rich tropical farmlands hold a surprisingly rich and distinct bird community that is threatened by conversion of subsistence farmland into sugarcane plantations. We conclude that conservation strategies in the tropics must go beyond rain forest protection and should integrate structurally heterogeneous agroecosystems into conservation plans that aim at maintaining the diverse bird communities of tropical forest‐farmland mosaics.  相似文献   

11.
During the springs of 1995–1997, we studied birds and landscapes at 70 sites in the Chihuahuan Desert to assess relations between bird community structure and landscape patchiness. Within each of two spatial extents (1‐km and 2‐km‐radius areas centered on each site), we measured the number of patches of individual land‐cover types and the total number of patches of all land‐cover types. Mean bird richness, and the mean abundance and probability of occurrence of most bird species were significantly correlated with one or more of these variables. Contrary to evidence from other systems, positive association with landscape patchiness did not increase with the degree to which species were habitat generalists, was not negatively related to body size, and did not differ between neotropical migrants and nonmigrants. For the communities’ primary constituent species as a group, the strength of positive and negative associations with patchiness did not differ between landscape extents. Within the 1‐km but not the 2‐km extent, habitat specialists were more positively and negatively associated with patchiness than were habitat generalists. In general, however, neither habitat breadth, body size, nor migratory status seemed to be responsible for associations with landscape patchiness. Mean richness, and the mean abundance and probability of occurrence of most species were significantly correlated with patchiness within one or both extents, and patchiness of all of the most extensive land‐cover types was influential. The simplest explanation for most of the bird‐patchiness relations we found is that the associations reflected species‐specific habitat needs. Through effects on avian richness, abundance, and occurrence, landscape patchiness affected bird community structure. A more complete understanding of the effects of landscape patchiness on bird community structure is likely to emerge when ecologists study the patchiness of major land‐cover types at various spatial extents.  相似文献   

12.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

13.
Aim To determine whether the effect of habitat fragmentation and habitat heterogeneity on species richness at different spatial scales depends on the dispersal ability of the species assemblages and if this results in nested species assemblages. Location Agricultural landscapes distributed over seven temperate Europe countries covering a range from France to Estonia. Methods We sampled 16 local communities in each of 24 agricultural landscapes (16 km2) that differ in the amount and heterogeneity of semi‐natural habitat patches. Carabid beetles were used as model organisms as dispersal ability can easily be assessed on morphological traits. The proximity and heterogeneity of semi‐natural patches within the landscape were related to average local (alpha), between local (beta) and landscape (gamma) species richness and compared among four guilds that differ in dispersal ability. Results For species assemblages with low dispersal ability, local diversity increased as the proximity of semi‐natural habitat increased, while mobile species showed an opposite trend. Beta diversity decreased equally for all dispersal classes in relation to proximity, suggesting a homogenizing effect of increased patch isolation. In contrast, habitat diversity of the semi‐natural patches affected beta diversity positively only for less mobile species, probably due to the low dispersal ability of specialist species. Species with low mobility that persisted in highly fragmented landscapes were consistently present in less fragmented ones, resulting in nested assemblages for this mobility class only. Main conclusions The incorporation of dispersal ability reveals that only local species assemblages with low dispersal ability show a decrease of richness as a result of fragmentation. This local species loss is compensated at least in part by an increase in species with high dispersal ability, which obscures the effect of fragmentation when investigated across dispersal groups. Conversely, fragmentation homogenizes the landscape fauna for all dispersal groups, which indicates the invasion of non‐crop habitats by similar good dispersers across the whole landscape. Given that recolonization of low dispersers is unlikely, depletion of these species in modern agricultural landscapes appears temporally pervasive.  相似文献   

14.
  • 1 We investigated, over the course of 2 years, the spatial distribution and abundance of two species of aphid, Metopolophium dirhodum and Sitobion avenae, and predatory species of carabid. This was undertaken in 24 wheat fields in ‘coarse‐grain’ and ‘fine‐grain’ landscapes in western France. A greater percentage of the latter landscape was covered by hedgerows and grassland and the total area covered by fields and the average size of the fields were smaller.
  • 2 The effects on aphid abundance of the distance from field margins, the presence of grassy strips and carabid abundance were determined in both landscapes.
  • 3 Both aphid species were more abundant in the ‘fine‐grain’ landscape, which may have been a result of the higher density of semi‐natural elements. In both types of landscape, the total numbers of aphids were negatively correlated with the distance from the field margin. This may have been because aphids were dispersing from overwintering sites in field margins. The abundance of M. dirhodum was strongly negatively correlated with the presence of grassy strips in the ‘coarse‐grain’ landscape, although there were no such significant correlations for either of the aphid species in the ‘fine‐grain’ landscape.
  • 4 Aphid and carabid abundances were negatively correlated in the ‘fine‐grain’ and positively in ‘coarse‐grain’ landscape.
  • 5 The results obtained in the present study emphasize the importance of semi‐natural areas in agricultural landscapes in shaping the spatial distribution of aphids and carabid beetles, their natural enemies, at different spatial scales.
  相似文献   

15.
Factors associated with agricultural intensification, for example, loss of seminatural vegetation and pesticide use has been shown to adversely affect the bee community. These factors may impact the bee community differently at different landscape scales. The scale dependency is expected to be more pronounced in heterogeneous landscapes. However, the scale‐dependent response of the bee community to drivers of its decline is relatively understudied, especially in the tropics where the agricultural landscape is often heterogeneous. This study looked at effects of agricultural intensification on bee diversity at patch and landscape scales in a tropical agricultural landscape. Wild bees were sampled using 12 permanent pan trap stations. Patch and landscape characteristics were measured within a 100 m (patch scale) and a 500 m (landscape scale) radius of pan trap stations. Information on pesticide input was obtained from farmer surveys. Data on vegetation cover, productivity, and percentage of agricultural and fallow land (FL) were collected using satellite imagery. Intensive areas in a bee‐site network were less specialized in terms of resources to attract rare bee species while the less intensive areas, which supported more rare species, were more vulnerable to disturbance. A combination of patch quality and diversity as well as pesticide use regulates species diversity at the landscape scale (500 m), whereas pesticide quantity drove diversity at the patch scale (100 m). At the landscape scale, specialization of each site in terms of resources for bees increased with increasing patch diversity and FL while at the patch scale specialization declined with increased pesticide use. Bee functional groups responded differentially to landscape characteristics as well as pesticide use. Wood nesting bees were negatively affected by the number of pesticides used but other bee functional groups were not sensitive to pesticides. Synthesis and Applications: Different factors affect wild bee diversity at the scale of landscape and patch in heterogeneous tropical agricultural systems. The differential response of bee functional groups to agricultural intensification underpins the need for guild‐specific management strategies for wild bee conservation. Less intensively farmed areas support more rare species and are vulnerable to disturbance; consequently, these areas should be prioritized for conservation to maintain heterogeneity in the landscape. It is important to conserve and restore seminatural habitats to maintain complexity in the landscapes through participatory processes and to regulate synthetic chemical pesticides in farm operations to conserve the species and functional diversity of wild bees.  相似文献   

16.
Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.  相似文献   

17.
Large‐scale modifications of natural ecosystems lead to mosaics of natural, semi‐natural and intensively used habitats. To improve communication in conservation planning, managers and other stakeholders need spatially explicit projections at the landscape scale of future biodiversity under different land‐use scenarios. For that purpose, we visualized the potential effect of five forest management scenarios on the avifauna of Kakamega Forest, western Kenya using different measures of bird diversity and GIS data. Future projections of bird diversity combined: (1) remotely sensed data on the spatial distribution of different forest management types; (2) field‐based data on the biodiversity of birds in the different management types; and (3) forest management scenarios that took into account possible views of various stakeholder groups. Management scenarios based on the species richness of forest specialists were very informative, because they reflected differences in the proportions of near‐natural forest types among the five scenarios. Projections based on community composition were even more meaningful, as they mirrored not only the proportions of near‐natural forest types, but also their perimeter to area ratios. This highlights that it is important to differentiate effects of the total area of available habitat and the degree of habitat fragmentation, both for species richness and community composition. Furthermore, our study shows that an approach that combines land‐use scenarios, remote sensing and field data on biodiversity can be used to visualize future biodiversity. As such, visualizations of alternative scenarios are valuable for successful communication about conservation planning considering different groups of stakeholders in species‐rich tropical forests.  相似文献   

18.
Agricultural landscapes can be defined as mosaics of landscape elements which are affected by farming practices. Woodland habitats, even though they are managed, are amongst the most stable elements of agricultural landscapes and can play a key role in the maintenance of biodiversity. This study of the ground beetle (carabid) communities of woodlands and woody linear features in a Scottish agricultural landscape shows that these habitats contribute significantly to the overall landscape diversity of these beetles. Communities in woods and hedgerows display the same species diversity and are both characterized by the presence of forest species. The main factors constraining carabid communities in both environments are the grazing intensity and, to a lesser extent, the type of soil. Heavily grazed locations are characterized by the occurrence of grassland species while forest species are restricted to ungrazed locations. At the landscape scale, the distribution of the forest species is limited by spatial isolation, indicating that there are insufficient functional links between woodland habitats in the study area. Isolation could be compensated for either by a better control of grazing so that linear features can be used as dispersal corridors for forest carabids or by planting more linear features and woods in the area.  相似文献   

19.
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species‐rich plant communities found in temperate seminatural grasslands. We investigated effects of land‐use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee‐pollination‐dependent plants increased with higher proportions of non‐arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land‐use intensity in the landscape.  相似文献   

20.
Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high‐intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully ‘tracking’ climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm‐ and cold‐associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold‐associated species, whilst for butterflies, warm‐associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting ‘adaptive’ community reorganization in response to climate change. Specifically, high‐intensity land use appears to exacerbate declines in cold‐adapted bird and butterfly species, and prevent increases in warm‐associated birds. This has broad implications for managing landscapes to promote climate change adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号