首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
由于HIV具有与其它微生物极为不同的生物学特点,HIV疫苗的研究面临着前所未有的困难和挑战。二十多年来,艾滋病疫苗研究主要采用了诱发中和抗体为主或细胞免疫为主两种策略,然而至今尚无实质性突破。诱发有效中和抗体一直是传统疫苗研发的重要策略,但HIV的高变异、多亚型等特点,使该策略在HIV疫苗研发中的应用成效甚微。近年来,一些具有广谱中和活性的HIV单抗的发现及其相应抗原表位的阐明,给HIV中和抗体疫苗的研究带来了新的希望。综合分析与评述这些进展,对于重新思考艾滋病疫苗和采用更好的策略进行艾滋病疫苗研究会有所帮助。  相似文献   

2.
由于HIV具有与其它微生物极为不同的生物学特点,HIV疫苗的研究面临着前所未有的困难和挑战。20多年来,艾滋病疫苗研究主要采用了诱发中和抗体为主或细胞免疫为主两种策略,然而至今尚无实质性突破。诱发有效中和抗体一直是传统疫苗研发的重要策略,但HIV的高变异、多亚型等特点,使该策略在HIV疫苗研发中的应用成效甚微。近年来,一些具有广谱中和活性的HIV单抗的发现及其相应抗原表位的阐明,给HIV中和抗体疫苗的研究带来了新的希望。综合分析与评述这些进展,对于重新思考艾滋病疫苗和采用更好的策略进行艾滋病疫苗研究会衣纸帮助。  相似文献   

3.
AIDS猕猴模型在HIV疫苗研究中的应用   总被引:2,自引:0,他引:2  
对HIV疫苗的研究一直是国际上艾滋病方面研究的热点和难点。动物模型则为疫苗研究必不可缺少的重要工具,缺乏合适的动物模型很大程度上制约了AIDS疫苗的研究。目前在国际上SIV或SHIV感染的猕猴模型为最常用的AIDS研究模型,受猕猴背景及病毒特性等多种因素的影响,使得以上两种模型在HIV疫苗研究中仍存在一定的局限性。为了更好地发挥猕猴模型在HIV疫苗研究中的巨大潜力,开发理想的AIDS猕猴模型已成为目前HIV疫苗研究的首要任务。本文简要介绍了AIDS疫苗的研发策略、研发概况以及SIV/SHIV猕猴模型在HIV疫苗中的应用,并对其中存在的问题及其应用前景进行了探讨。  相似文献   

4.
HIV严峻的流行形势迫切需要艾滋病疫苗,特别是黏膜疫苗。法国科学家Morgane Bomsel发表在最新一期Immunity中的文章表明,由该实验室研制的HIV黏膜疫苗能有效预防免疫缺陷病毒的黏膜感染。该疫苗是由包裹gp41亚单位抗原的病毒小体组成。该疫苗肌肉注射和滴鼻两种方式免疫恒河猴,  相似文献   

5.
SHIV及其在AIDS疫苗和药物研究中的应用   总被引:1,自引:0,他引:1  
艾滋病已成为21世纪威胁人类健康的最主要的疾病,最有效的预防措施,就是研制安全有效的疫苗.疫苗安全性和有效性评价,以及疫苗组合的选择和免疫程序的策略,需要在合适的动物模型中进行分析.SIV/恒河猴模型曾被认为是最有效的研究模型.但是,SIV和HIV之间基因的差异,使得这个模型存在很大局限性.研究人员还曾经致力于HIV-1/黑猩猩模型,但伦理学等方面的问题导致该模型也不能被广泛利用[1].  相似文献   

6.
亚洲各国艾滋病疫苗简介   总被引:1,自引:0,他引:1  
获得性免疫缺陷综合征(acquired immunodeficiencysy ndrome,AIDS),即"艾滋病",是一种致死率极高的全球传染性疾病,尚无有效的治愈方法。目前,亚洲已成为世界第二大艾滋病高发区。对经济并不发达的亚洲地区来说,研发艾滋病疫苗,对于预防人类免疫缺陷病毒(human immunodeficiency virus,HIV),即"艾滋病病毒"的传播具有重要的战略意义。本文对中国、泰国、印度、日本和澳大利亚的艾滋病疫苗研发和临床试验进行了分析和总结,并分析了亚洲开发艾滋病疫苗的前景及应对策略。  相似文献   

7.
病毒性载体疫苗是一种有前途的艾滋病疫苗.为了构建以重组腺相关病毒8型(recombinant adeno associated virus type 8,rAAV8)为载体,表达HIV或SIV包膜蛋白的艾滋病疫苗.同时在小鼠体内对其免疫原性进行评价,为下一步研究奠定基础.本研究分别构建了表达HIVAE亚型和SIVmac239株包膜蛋白(不含胞内区)的rAAV8-AEgp145和rAAV8-SIVenvT两种重组病毒,并通过PCR和WesternBlot方法对重组病毒进行了体外鉴定.将两种重组病毒分别接种BALB/c小鼠,应用ELISA和ELISPOT方法检测小鼠的HIV/SIV特异性抗体滴度和细胞免疫应答强度.结果显示,rAAV8能够在293T细胞中高效表达HIV AEgp145和SIVenvT基因.小鼠接种两种重组病毒3-5W后,均能检测到gp120特异性抗体和env特异性细胞免疫应答,并且在16-20W后反应强度仍显著高于对照组.以上结果提示,携带HIVAEgp145和SIVenvT基因的rAAV8载体能够在小鼠体内诱导中等强度并且持续时间较长的特异性体液和细胞免疫应答.  相似文献   

8.
艾滋病已成为21世纪威胁人类健康的最主要的疾病,最有效的预防措施,就是研制安全有效的疫苗。疫苗安全性和有效性评价,以及疫苗组合的选择和免疫程序的策略,需要在合适的动物模型中进行分析。SIV/恒河猴模型曾被认为是最有效的研究模型。但是,SIV和HIV之间基因的差异,使得这个模型存在很大局限性。研究人员还曾经致力于HIV-1/黑猩猩模型,但伦理学等方面的问题导致该模型也不能被广泛利用[1]。嵌合猿猴/人免疫缺陷病毒(Chimeric simian/human immunodeficency virus,SHIV),是以猿猴免疫缺陷病毒(Simian immunode ficiency virus,SIV…  相似文献   

9.
Env糖蛋白是决定HIV病毒粒子感染、穿入、融合及抗原性的主要结构蛋白,并且可诱导机体产生体液免疫和细胞免疫。Gag蛋白是HIV主要结构蛋白之一,氨基酸序列较为保守,抗源决定簇较少变异,也能够诱导机体产生体液免疫和细胞免疫。利用O把蛋白研制巨分子颗粒化疫苗,可能克服env不有效抵抗异源变异毒株攻击的缺陷,这是近年来HIV疫苗研制新热点。在艾滋病的研究中,已成功地利用痘菌病毒表达了HIV-IGag、Env等蛋白。随着生物技术的发展,人们设想把细胞因子基因与某些外派目的基因在细胞中进行共表达,来增强免疫反应,现已证明多…  相似文献   

10.
目的:确定HIV-1疫苗中有效的交叉保护性细胞免疫抗原,提高各个基因在相应疫苗载体中的表达水平,为研究不同抗原在DNA载体和痘苗病毒载体中的免疫原性奠定实验基础。方法:选择HIV B′/C亚型5个以细胞免疫为主的抗原(Gag、Pol、Rev、Tat和Nef),进行基因序列优化及表达结构改造,并分别构建以质粒DNA和重组痘苗病毒为载体的两大类HIV-1疫苗。结果:优化前后5个目的基因均能够在这2种载体中有效表达;虽然采用相同的基因修饰策略,但与痘苗病毒载体相比,在DNA载体中各基因表达水平的提高均较为明显;含有抑制性序列(INS)的gag、pol基因经密码子优化后,Gag、Pol蛋白的表达均明显提高,其中Pol蛋白的提高更为明显,单独pol基因比gagpol天然结构表达水平要高,而gag基因却变化不大;对于rev、tat、nef基因而言,优化后的单独基因结构要略高于优化后的融合结构(hRTN),且二者均高于未优化的融合结构(RTN)。结论:为进一步确定HIV-1疫苗中有效的交叉保护性细胞免疫抗原、研究不同抗原在DNA载体和痘苗病毒载体中的免疫原性奠定了实验基础,为进一步研究DNA疫苗和重组痘苗病毒疫苗联合免疫提供了实验依据。  相似文献   

11.
Adenoviral (Ad) vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. However, in some cases these conventional Ad-based vaccines have had sub-optimal clinical results. These sub-optimal results are attributed in part to pre-existing Ad serotype 5 (Ad5) immunity. In order to circumvent the need for antigen expression via transgene incorporation, the “antigen capsid-incorporation” strategy has been developed and used for Ad-based vaccine development in the context of a few diseases. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. The major capsid protein hexon has been utilized for these capsid incorporation strategies due to hexon''s natural role in the generation of anti-Ad immune response and its numerical representation within the Ad virion. Using this strategy, we have developed the means to incorporate heterologous peptide epitopes specifically within the major surface-exposed domains of the Ad capsid protein hexon. Our study herein focuses on generation of multivalent vaccine vectors presenting HIV antigens within the Ad capsid protein hexon, as well as expressing an HIV antigen as a transgene. These novel vectors utilize HVR2 as an incorporation site for a twenty-four amino acid region of the HIV membrane proximal ectodomain region (MPER), derived from HIV glycoprotein gp41 (gp41). Our study herein illustrates that our multivalent anti-HIV vectors elicit a cellular anti-HIV response. Furthermore, vaccinations with these vectors, which present HIV antigens at HVR2, elicit a HIV epitope-specific humoral immune response.  相似文献   

12.
Plant cell factories and mucosal vaccines   总被引:19,自引:0,他引:19  
Many advances continue to be made in the field of plant-derived vaccines. Plants have been shown capable of expressing a multicomponent vaccine that when orally delivered induces a T-helper cell subset 1 response and enables passive immunization. Furthermore, a plant-derived vaccine has been shown to protect against challenge in the target host. Increased antigen expression levels (up to 4.1% total soluble protein) have been obtained through transformation of the chloroplast genome. In view of these findings, plant-derived vaccines have been proved as valuable commodities to the world's health system; however, before their application, studies need to focus on optimization of immunization strategies and to investigate antigen stability.  相似文献   

13.
14.
After nearly three decades of searching for a vaccine against HIV, a cure for this pandemic disease still remains elusive. The low immunogenicity of the surface proteins and the huge variability of the virus, together with the immunocompromised status of the host, have made developing an HIV vaccine an uphill battle. Over the past few years, both immunogen design and immunization strategies have improved, providing hope for future, although the anti-HIV responses achieved still remain modest. As developing a prophylactic vaccine seems unlikely nowadays, efforts have focused on alternative therapeutic immunization approaches, although these still need to be further optimized. Using an immunomodulator capable of restoring immune function in the context of infection, thereby boosting cell-mediated and humoral responses, could be critical in effectively improving current therapeutic approaches. Adenosine deaminase, a protein with a pivotal role in T-cell co-stimulation, has been shown to robustly enhance specific T-cell responses against HIV in vitro. Although its role in humoral responses has not yet been assessed, genetic defects in this enzyme are associated with impaired cellular and humoral responses. Importantly, this molecule is already commercially available pharmaceutically and, therefore, it fulfils all the requirements to be assayed as an anti-HIV vaccine adjuvant.  相似文献   

15.
An artificial antigen forming the C34 trimeric structure targeting membrane-fusion mechanism of HIV-1 has been evaluated as an HIV vaccine. The C34 trimeric molecule was previously designed and synthesized using a novel template with C3-symmetric linkers by us. The antiserum produced by immunization of the C34 trimeric form antigen showed 23-fold higher binding affinity for the C34 trimer than for the C34 monomer and showed significant neutralizing activity. The present results suggest effective strategies of the design of HIV vaccines and anti-HIV agents based on the native structure mimic of proteins targeting dynamic supramolecular mechanisms in HIV fusion.  相似文献   

16.
We describe the engineering of a human immunodeficiency virus-1 (HIV-1) p24-immunoglobulin A (IgA) antigen-antibody fusion molecule for therapeutic purposes and its enhancing effect on fused antigen expression in tobacco plants. Although many recombinant proteins have been expressed in transgenic plants as vaccine candidates, low levels of expression are a recurring problem. In this paper, using the HIV p24 core antigen as a model vaccine target, we describe a strategy for increasing the yield of a recombinant protein in plants. HIV p24 antigen was expressed as a genetic fusion with the alpha2 and alpha3 constant region sequences from human Ig alpha-chain and targeted to the endomembrane system. The expression of this fusion protein was detected at levels approximately 13-fold higher than HIV p24 expressed alone, and a difference in the behaviour of the two recombinant proteins during trafficking in the plant secretory pathway has been identified. Expressing the antigen within the context of alpha-chain Ig sequences resulted in the formation of homodimers and the antigen was correctly recognized by specific antibodies. Furthermore, the HIV p24 elicited T-cell and antibody responses in immunized mice. The use of Ig fusion partners is proposed as a generic platform technology for up-regulating the expression of antigens in plants, and may represent the first step in a strategy to design new vaccines with enhanced immunological properties.  相似文献   

17.
流行性感冒(简称流感)的频频暴发严重危害人类健康和公共卫生,已引起全球范围内的高度关注。预防流感最有效和经济的措施是接种疫苗,但流感病毒的持续变异可逃逸人群已有的免疫应答,目前使用的季节性流感疫苗仅对亚型内抗原匹配较好的毒株产生免疫保护作用,难以有效应对因抗原漂移或抗原转换而产生的无法预料的流感大流行。因此,研发对流感病毒不同亚型均具有交叉免疫保护作用的广谱流感疫苗具有重要意义。近年来,流感病毒广谱中和抗体的发现、对流感病毒抗原保守区域及细胞免疫机制的深入研究、疫苗免疫策略的优化等都为广谱流感疫苗的研发提供了新思路。本文简述了近几年基于血凝素、基质蛋白、核蛋白等多种流感靶抗原的广谱流感疫苗的研究进展。  相似文献   

18.
Ye L  Wen Z  Dong K  Wang X  Bu Z  Zhang H  Compans RW  Yang C 《PloS one》2011,6(5):e14813
Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.  相似文献   

19.
Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+CD25+Foxp3+T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-γ-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号