首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysbindin was identified as a dystrobrevin-binding protein potentially involved in the pathogenesis of muscular dystrophy. Subsequently, genetic studies have implicated variants of the human dysbindin-encoding gene, DTNBP1, in the pathogeneses of Hermansky-Pudlak syndrome and schizophrenia. The protein is a stable component of a multisubunit complex termed BLOC-1 (biogenesis of lysosome-related organelles complex-1). In the present study, the significance of the dystrobrevin-dysbindin interaction for BLOC-1 function was examined. Yeast two-hybrid analyses, and binding assays using recombinant proteins, demonstrated direct interaction involving coiled-coil-forming regions in both dysbindin and the dystrobrevins. However, recombinant proteins bearing the coiled-coil-forming regions of the dystrobrevins failed to bind endogenous BLOC-1 from HeLa cells or mouse brain or muscle, under conditions in which they bound the Dp71 isoform of dystrophin. Immunoprecipitation of endogenous dysbindin from brain or muscle resulted in robust co-immunoprecipitation of the pallidin subunit of BLOC-1 but no specific co-immunoprecipitation of dystrobrevin isoforms. Within BLOC-1, dysbindin is engaged in interactions with three other subunits, named pallidin, snapin and muted. We herein provide evidence that the same 69-residue region of dysbindin that is sufficient for dystrobrevin binding in vitro also contains the binding sites for pallidin and snapin, and at least part of the muted-binding interface. Functional, histological and immunohistochemical analyses failed to detect any sign of muscle pathology in BLOC-1-deficient, homozygous pallid mice. Taken together, these results suggest that dysbindin assembled into BLOC-1 is not a physiological binding partner of the dystrobrevins, likely due to engagement of its dystrobrevin-binding region in interactions with other subunits.  相似文献   

2.
Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin‐binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome‐related organelles complex 1 (BLOC‐1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC‐1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild‐type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC‐1 expression and/or function.  相似文献   

3.
The dystrophin-associated protein complex (DPC) is required for the maintenance of muscle integrity during the mechanical stresses of contraction and relaxation. In addition to providing a membrane scaffold, members of the DPC such as the alpha-dystrobrevin protein family are thought to play an important role in intracellular signal transduction. To gain additional insights into the function of the DPC, we performed a yeast two-hybrid screen for dystrobrevin-interacting proteins. Here we describe the identification of a dysbindin, a novel dystrobrevin-binding protein. Dysbindin is an evolutionary conserved 40-kDa coiled-coil-containing protein that binds to alpha- and beta-dystrobrevin in muscle and brain. Dystrophin and alpha-dystrobrevin are co-immunoprecipitated with dysbindin, indicating that dysbindin is DPC-associated in muscle. Dysbindin co-localizes with alpha-dystrobrevin at the sarcolemma and is up-regulated in dystrophin-deficient muscle. In the brain, dysbindin is found primarily in axon bundles and especially in certain axon terminals, notably mossy fiber synaptic terminals in the cerebellum and hippocampus. These findings have implications for the molecular pathology of Duchenne muscular dystrophy and may provide an alternative route for anchoring dystrobrevin and the DPC to the muscle membrane.  相似文献   

4.
The present study aimed to investigate pathways that contribute to uptake and transcytosis of high-density lipoproteins (HDLs) and HDL-associated alpha-tocopherol (alpha TocH) across an in vitro model of the blood-brain barrier (BBB). In primary porcine brain capillary endothelial cells HDL-associated alpha TocH was taken up in 10-fold excess of HDL holoparticles, indicating efficient selective uptake, a pathway mediated by scavenger receptor class B, type I (SR-BI). SR-BI was present in caveolae of brain capillary endothelial cells and expressed almost exclusively at the apical membrane. Disruption of caveolae with methyl-beta-cyclodextrin (CDX) resulted in (mis)sorting of SR-BI to the basolateral membrane. Immunohistochemistry of porcine brain cryosections revealed SR-BI expression on brain capillary endothelial cells and presumably astrocytic endfeet. HDL-associated [(14)C]alpha TocH taken up by brain capillary endothelial cells was recovered in sucrose gradient fractions containing the majority of cellular caveolin-1, the major caveolae-associated protein. During mass transfer studies using alpha TocH-enriched HDL, approximately 50% of cellular alpha TocH was recovered with the bulk of cellular caveolin-1 and SR-BI. Efflux experiments revealed that a substantial amount of cell-associated [(14)C]alpha TocH could be mobilized into the culture medium. In addition, apical-to-basolateral transport of HDL holoparticles and HDL-associated alpha TocH was saturable. Results from the present study suggest that part of cerebral apolipoprotein A-I and alpha TocH originates from plasma HDL transcytosed across the BBB and that caveolae-located SR-BI facilitates selective uptake of HDL-associated alpha TocH at the BBB.  相似文献   

5.
Schizophrenia is a complex mental disorder with fairly high level of heritability. Dystrobrevin binding protein 1, a gene encoding dysbindin protein, is a susceptibility gene for schizophrenia that was identified by family-based association analysis. Recent studies revealed that dysbindin is involved in the exocytosis and/or formation of synaptic vesicles. However, the molecular function of dysbindin in synaptic transmission is largely unknown. To investigate the signaling pathway in which dysbindin is involved, we isolated dysbindin-interacting molecules from rat brain lysate by combining ammonium sulfate precipitation and dysbindin-affinity column chromatography, and identified dysbindin-interacting proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Proteins involved in protein localization process, including Munc18-1, were identified as dysbindin-interacting proteins. Munc18-1 was co-immunoprecipitated with dysbindin from rat brain lysate, and directly interacted with dysbindin in vitro . In primary cultured rat hippocampal neurons, a part of dysbindin was co-localized with Munc18-1 at pre-synaptic terminals. Our result suggests a role for dysbindin in synaptic vesicle exocytosis via interaction with Munc18-1.  相似文献   

6.
The expression of gamma-glutamyl transpeptidase (GGT) is a specific property of the brain capillary endothelium that constitutes the blood-brain barrier. We report here the detection of GGT, not only in endothelial cells, but also in pericytes, demonstrating that a brain capillary-specific pericyte population exists. We raised antibodies to GGT using a porcine brain microvessel GGT-protein-A (staphylococcal protein A) fusion protein as antigen which was expressed in Escherichia coli. The immunohistochemical analysis of the subcapillary distribution of GGT in porcine brain cortex and cerebellum sections by both light and electron microscopy revealed the expression of GGT in the capillary-adjacent pericytes in addition to the GGT-positive endothelial layer. We confirmed these data for cultured porcine brain microvascular endothelial cells and pericytes. GGT immunofluorescence could be detected in both cell types in culture. Endothelial cells exhibited a weak staining, whereas pericytes were strongly positive for GGT. Due to the high phagocytotic activity of pericytes and their location on the abluminal surface of the microvessels, we propose a possible protective or detoxifying function of GGT in cerebrovascular pericytes.  相似文献   

7.
The localization of nitric oxide synthase (NOS) in vascular endothelial cells of submucosal blood vessels from the guinea-pig ileum was examined using NADPH diaphorase histochemistry at the light microscopic level, and endothelial NOS immunohistochemistry at the light and electron microscopic level. The pattern of staining observed following NADPH diaphorase histochemistry and endothelial NOS immunohistochemistry was identical. Endothelial cells of the arterioles, capillaries and venules showed small patches of intense, perinuclear staining. Under the electron microscope, endothelial NOS immunoreactivity was found predominantly in association with the Golgi apparatus and with the membranes of some vesicles. Small regions of the plasma membrane and the rough endoplasmic reticulum also showed some immunoreactivity. The presence of NOS in the Golgi apparatus and in vesicles raises the possibility that NOS may be exteriorized by endothelial cells, and hence that nitric oxide is synthesized extracellularly.  相似文献   

8.
The P-glycoproteinmdr is expressed not only in tumoral cells, but also in nontransformed cells, including the specialized endothelial cells of brain capillaries which build up the blood-brain barrier. Since all previously identified blood-brain barrier markers are rapidly lost when cerebral capillary endothelial cells are maintained in primary culture, we have investigated whether P-glycoprotein (P-gp) would follow the same rule, in order to address the influence of the cerebral environment on the specific P-gp expression in the brain endothelium. As compared to freshly isolated purified cerebral capillaries, P-glycoprotein was detected by immunochemistry at a high level in 5–7 day primary cultures. In our culture conditions, P-glycoprotein was immunodetected at a lower molecular weight than that found in freshly isolated capillaries. Enzymatic deglycosylation led to the same 130 kDa protein for both fresh and cultured samples, suggesting that P-gp post-translational modifications were altered in primary cultures. However, studies on the uptake and efflux of the P-gp substrate [3H]vinblastine, and on the effect of variousmdr reversing agents on the uptake and efflux, clearly indicated that the efflux pump function of the P-glycoprotein was maintained in primary cultures of bovine cerebral capillary endothelial cells. P-Glycoprotein may thus represent the first blood-brain barrier marker which is maintained in cerebral endothelial cells cultured in the absence of factors originating from the brain parenchyma.Abbreviations BBB blood-brain barrier - BCEC brain capillary endothelial cells - -GT -glutamyltranspeptidase - HBSS Hank's balanced salt solution - Mab monoclonal antibody - mdr multidrug resistance - P-gp P-glycoprotein  相似文献   

9.
The transmembrane chemokine CXCL16 is expressed by dendritic and vascular cells and mediates chemotaxis and adhesion of activated T cells via the chemokine receptor CXCR6/Bonzo. Here we describe the expression and shedding of this chemokine by glioma cells in situ and in vitro. By quantitative RT-PCR and immunohistochemistry, we show that CXCL16 is highly expressed in human gliomas, while expression in normal brain is low and mainly restricted to brain vascular endothelial cells. In cultivated human glioma cells as well as in activated mouse astroglial cells, CXCL16 mRNA and protein is constitutively expressed and further up-regulated by tumour necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma). CXCL16 is continuously released from glial cells by proteolytic cleavage which is rapidly enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). As shown by inhibitor studies, two distinct members of the disintegrin-like metalloproteinase family ADAM10 and 17 are involved in the constitutive and PMA-induced shedding of glial CXCL16. In addition to the chemokine, its receptor CXCR6 could be detected by quantitative RT-PCR in human glioma tissue, cultivated murine astrocytes and at a lower level in microglial cells. Functionally, recombinant soluble CXCL16 enhanced proliferation of CXCR6-positive murine astroglial and microglial cells. Thus, the transmembrane chemokine CXCL16 is expressed in the brain by malignant and inflamed astroglial cells, shed to a soluble form and targets not only activated T cells but also glial cells themselves.  相似文献   

10.
In situ localization of P-glycoprotein (ABCB1) in human and rat brain.   总被引:6,自引:0,他引:6  
Transport of several xenobiotics including pharmacological agents into or out of the central nervous system (CNS) involves the expression of ATP-dependent, membrane-bound efflux transport proteins such as P-glycoprotein (P-gp) at the blood-brain barrier (BBB). Previous studies have documented gene and protein expression of P-gp in brain microvessel endothelial cells. However, the exact localization of P-gp, particularly at the abluminal side of the BBB, remains controversial. In the present study we examined the cellular/subcellular distribution of P-gp in situ in rat and human brain tissues using immunogold cytochemistry at the electron microscope level. P-gp localizes to both the luminal and abluminal membranes of capillary endothelial cells as well as to adjacent pericytes and astrocytes. Subcellularly, P-gp is distributed along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER). These results provide evidence for the expression of P-gp in human and rodent brain capillary along their plasma membranes as well as at sites of protein synthesis, glycosylation, and membrane trafficking. In addition, its presence at the luminal and abluminal poles of the BBB, including pericytes and astrocyte plasma membranes, suggests that this glycoprotein may regulate drug transport processes in the entire CNS BBB at both the cellular and subcellular level.  相似文献   

11.
Claudins are thought to be major components of tight junctions (TJs), and claudin-5 and -12 are localized at TJs of the blood-brain barrier (BBB). Claudin-5-deficient mice exhibit size-selective (<800 Da) opening of the BBB. The purpose of this study was to clarify the expression levels of claudin-5 and -12 in rat brain capillary endothelial cells, and to examine the ability of claudin-5 to form TJs in cultured rat brain capillary endothelial cells (TR-BBB). Expression of claudin-5 mRNA in rat brain capillary fraction was 751-fold greater than that of claudin-12. The level of claudin-5 mRNA in the rat brain capillary fraction (per total mRNA) was 35.6-fold greater than that in whole brain, while the level of claudin-12 mRNA was only 13.9% of that in whole brain, suggesting that expression of claudin-12 mRNA is not restricted to brain capillaries. Transfection of TR-BBB cells with the claudin-5 gene afforded TR-BBB/CLD5 cells, which showed no change in expression of claudin-12 or ZO-1, while the expressed claudin-5 was detected at the cell-cell boundaries. The permeability surface product of [(14)C]inulin at a TR-BBB/CLD5 cell monolayer was significantly smaller (P < 0.01) than that for the parental TR-BBB cells, and the values of the permeability coefficient (Pe) were 1.14 x 10(-3) and 11.6 x 10(-3) cm/min, respectively. These results indicate that claudin-5, but not claudin-12, is predominantly expressed in brain capillaries, and plays a key role in the appearance of barrier properties of brain capillary endothelial cells.  相似文献   

12.
Primary cultures of brain capillary endothelial cells (BCECs) were used to investigate the induction of blood-brain barrier (BBB) characteristics in vitro. Enzymatic activities of gamma-glutamyltranspeptidase (gamma-GT) and alkaline phosphatase (ALP) were taken as indicators for the expression of the BBB phenotype. We were able to show that a coculture system with a direct cell-cell contact between astroglial cells and BCECs is the necessary precondition for an increase of these enzyme activities that are lost in pure BCEC cultures. Coculture with both astrocytes and C6-glioma cells reestablishes the BBB phenotype whereas conditioned media as well as an astrocyte-derived extracellular matrix were ineffective. The susceptibility of the BCECs to an astroglial stimulus depends on the proliferative state of the BCECs. Cells in an early highly proliferative culture phase were stimulated to express an enzymatic activity level similar to the in vivo situation. Confluent BCEC monolayers were not induced at all. With the ALP we observed a spatial induction within a BCEC colony. Astrocyte-induced ALP activity was first observed at an outer belt of BCEC colonies in direct contact with the astrocyte layer. However, this signal is transferred to the center of the colony with time in culture. We conclude that direct contact of BCECs with astroglial cells is necessary for the induction of the BBB phenotype in cultured BCECs and that this signal may be transferred from induced to noninduced BCECs.  相似文献   

13.
The dystrobrevin‐binding protein 1 (DTNBP1) gene is a candidate risk factor for schizophrenia and has been associated with cognitive ability in both patient populations and healthy controls. DTNBP1 encodes dysbindin protein, which is localized to synaptic sites and is reduced in the prefrontal cortex and hippocampus of patients with schizophrenia, indicating a potential role in schizophrenia etiology. Most studies of dysbindin function have focused on the sandy (sdy) mice that lack dysbindin protein and have a wide range of abnormalities. In this study, we examined dysbindin salt and pepper (spp) mice that possess a single point mutation on the Dtnbp1 gene predicted to reduce, but not eliminate, dysbindin expression. By western blot analysis, we found that spp homozygous (spp ?/?) mutants had reduced dysbindin and synaptosomal‐associated protein 25 (SNAP‐25) in the prefrontal cortex, but unaltered levels in hippocampus. Behaviorally, spp mutants performed comparably to controls on a wide range of tasks assessing locomotion, anxiety, spatial recognition and working memory. However, spp ?/? mice had selective deficits in tasks measuring novel object recognition and social novelty recognition. Our results indicate that reduced dysbindin and SNAP‐25 protein in the prefrontal cortex of spp ?/? is associated with selective impairments in recognition processing. These spp mice may prove useful as a novel mouse model to study cognitive deficits linked to dysbindin alterations. Our findings also suggest that aspects of recognition memory may be specifically influenced by DTNBP1 single nucleotide polymorphisms or risk haplotypes in humans and this connection should be further investigated.  相似文献   

14.
We present an ultrastructural study of thyroid capillaries in which 50-day-old rats Wistar rats, were irradiated with an infrared (IR) laser, (total dose, 46.80 J/cm2), the tissue quantified 1 day after ending treatment and a quantitative capillary analysis carried out by light and electron microscopy. Light microscopy was used to calculate capillary volume density revealing a significant increase in the irradiated rats. The quantitative measurement of parameters by electron microscopy required a two stage analysis: Level I, Electron Microscopy (Magnification x5,000); and Level II, Electron Microscopy (Magnification x26,000). At Level I, the following parameters were measured in each capillary: capillary area, capillary diameter, luminal area, luminal diameter, endothelial area, nuclear area and mean endothelial thickness. At Level II, pinocytotic vesicle diameter and their numerical density in endothelial cells were evaluated. Electron microscopic analysis revealed an increased luminal area in the capillaries of the irradiated rats. They also presented a decrease in endothelial cell thickness and vesicular diameter and an increase in vesicle numerical density. This latter increase is indicative of presumptive changes in capillary permeability, but the possible functional significance of these morphological changes in the endothelial cells requires further investigation.  相似文献   

15.
The elements of the cholinergic system (acetylcholinesterase and choline acetyltransferase) and butyrylcholinesterase were studied in human cortical capillary samples, brain-derived endothelial cell cultures and glial cell cultures. It was shown that the elements of the cholinergic system are present in the microvessels, but the choline acetyltransferase activity may be due to contamination with cholinergic nerve terminals since no choline acetyltransferase could be demonstrated in endothelial cell cultures. The present results revealed that the activity of acetylcholinesterase is reduced in the cortical endothelial cell cultures after longer culture times, while butyrylcholinesterase activity is not altered. In a system where endothelial cells were cocultured with embryonic human brain astroglial cells for 12 days in vitro, the acetylcholinesterase activity was increased 2-fold. These results support a glial influence on the enzyme activity of the cerebral endothelium.  相似文献   

16.
An improved method is described for culturing primary rat brain capillary endothelial cells (RBCEC) on glass, covered by Matrigel. The procedure using Matrigel yields spindle-shaped endothelial cells exhibiting close cell-cell appositions seen on electron microscopic sections. These cells permanently express tight junction proteins ZO-1, claudin-5 and the adherent junction protein beta-catenin, as revealed by immunofluorescence. Furthermore, glass coverslips covered with Matrigel provide a stable and low-background fluorescent base for microfluorimetric calcium measurements. By this method, hereby we show that the PAR-4 agonist peptide induces transient [Ca2+]i changes with different kinetics compared to that due to activation of the PAR-1 receptor. This indicates that RBCE cells grown on Matrigel express PAR-4 receptors.  相似文献   

17.
Vascular endothelial cells are structurally and functionally heterogeneous. However, the molecular basis of this heterogeneity remains poorly defined. We used subtractive and differential screening to identify genes that exhibit heterogeneous expression patterns among vascular endothelial cells. One such gene is cellular retinol binding protein III (CRBP-III/Rbp7). Analysis of the lacZ knockin line for this gene (CRBP-III:lacZ) revealed a novel organ-specific vascular endothelial expression pattern. LacZ was expressed in vascular endothelial cells in heart, skeletal muscle, adipose tissues, thymus, and salivary gland. However, it was not detected in other tissues such as brain, liver, and lung. Furthermore, the expression within each organ was primarily restricted to small capillary endothelial cells, but could not be detected in larger vessels. This organ-specific vascular endothelial expression of CRPB:lacZ is relatively resistant to the changes of organ microenvironment. However, the level of expression can be modified by vitamin A deficiency. Therefore, our results provide novel molecular evidence for the heterogeneity of vascular endothelial cells.  相似文献   

18.
The maturation of vascular endothelial cells in the chick chorioallantoic membrane, from 8 to 18 days after fertilization, was investigated by light and electron microscopy. Light microscopic autoradiography following administration of tritiated thymidine was used to determine the thymidine labeling index of the endothelial cell population at various stages of development. Results indicate that, prior to day 11 of incubation, endothelial cells have the morphological characteristics of immature and relatively undifferentiated cells. During this time they exhibit a high labeling index of approximately 23%. At 11 days, the labeling index decreases to 2.8%, and subsequently the cells begin to acquire structural characteristics of mature differentiated endothelium. The pattern of endothelial cell labeling suggests that, during the period of high endothelial cell mitosis, the capillary network of the growing chorioallantoic membrane is expanding by an overall proliferation of endothelial cells in existing capillaries, rather than by formation of new capillary sprouts. The immaturity of endothelial cells in the young chorioallantois, or conversely their high rate of cell division, may influence the ability of this membrane to support grafted tissue prior to day 11.  相似文献   

19.
The aim of the present study was to investigate the expression of nuclear receptor mRNA and regulation of the expression of ATP-binding cassette (ABC) transporters by nuclear receptor agonists in rat brain capillary endothelial cells, which form the blood-brain barrier, by using rat brain capillary fraction from 8-week-old rats and a conditionally immortalized brain capillary endothelial cell line (TR-BBB13). RT-PCR analysis revealed that liver X receptor alpha and beta, retinoid X receptor alpha and beta and peroxisome proliferator-activating receptor alpha and beta mRNAs were expressed in the rat brain capillary endothelial cells and TR-BBB cells. In contrast, pregnane X receptor, farnesoid X receptor and constitutive androstane receptor were not detected. Furthermore, treatment with a liver X receptor agonist increased the ABCA1 mRNA level in TR-BBB13 cells, while ABCG2 mRNA expression was not affected. Treatment with a rat pregnane X receptor agonist did not affect the ABCB1 mRNA level in TR-BBB13 cells. These results demonstrate that the rat blood-brain barrier has an expressional regulation mechanism via sterol-related nuclear receptor, and indicate that the blood-brain barrier in 8-week-old rats lacks ABCB1 regulation via pregnane X receptor.  相似文献   

20.
J Plouet  H Moukadiri 《Biochimie》1990,72(1):51-55
Recently, a new growth factor was purified to homogeneity; its biological activity appeared to be restricted to vascular endothelial derived cells. As it was also angiogenic in vivo, it was provisionally named vasculotropin. An iodination procedure used to label vasculotropin did not damage the molecule; it was thus possible to undertake binding studies. The binding of iodinated vasculotropin to bovine brain capillary endothelial cells reached saturation at 7 ng/ml and half maximal binding occurred at 1.5 ng/ml. Scatchard analysis of the data demonstrated 2 classes of binding sites with apparent dissociation constants of 4 and 41 pM and 600 and 4,100 sites per cell respectively. The interaction was specific since an excess of unlabelled vasculotropin, but no Fibroblast Growth Factor or Transforming Growth Factor Beta almost totally abolished the binding of the tracer. A sensitive radioreceptor-assay convenient for measuring vasculotropin in biological samples is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号