首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.  相似文献   

2.
Hypogonadism is considered to be one of the major risk factors for osteoporosis in men. Therefore, it is an important goal for skeletal research to improve our understanding of the skeletal effects of androgens. Androgen deficiency during growth is associated with a failure to acquire normal peak bone mass, and there is good evidence that the effects of androgens on skeletal growth and the development of a male skeletal phenotype are mediated through the androgen receptor. In adult men, acute withdrawal of androgens by surgical or chemical castration induces high turnover bone loss. Similarly, orchidectomy of aged, non-growing male rats is associated with a pronounced and sustained increase in bone turnover and with true loss of cancellous and cortical bone. Interestingly, the changes in bone turnover induced by orchidectomy are paralleled by a concomitant increase in B lymphopoiesis in bone marrow of rats and mice. Although there is firm evidence that male bone metabolism can be influenced by androgens and estrogen, a variety of clinical and animal experimental data have strongly suggested that, under physiological circumstances, the maintenance of cancellous bone mass in males involves the skeletal action of estrogen derived from aromatization of androgens. Aged male rats appear to closely mimic the conditions induced by androgen withdrawal in adult humans, and this animal model may be used 1) to elucidate further the role of muscle as a mediator of the actions of androgens on bone, 2) to explore the regulatory functions of androgens and estrogens in the male skeleton and the immune system, and 3) to find new treatment strategies for the prevention and treatment of osteoporosis in men.  相似文献   

3.
4.
Leptin influences bone formation centrally through the hypothalamus and peripherally by acting on osteoblasts or their precursors. However, neither mechanism explains the divergent, gender-specific correlation between leptin and bone mineral density in humans. Although leptin is a potent regulator of pro-inflammatory immune responses, a potential role for leptin as an osteoimmunologic intermediate in bone metabolism has not been tested. Mice with myeloid-specific ablation of the long-form leptin receptor (ObRb) were generated using mice expressing cre-recombinase from the lysoszyme M promoter. At 12 weeks of age, the conditional knockout mice did not display any appreciable phenotype. However, at 52 weeks 2 changes were noted. First, there was a mild increase in liver inflammation. Second, a gender-specific, divergent bone phenotype was observed. Female mice displayed a consistent trend toward decreased trabecular bone parameters including reductions in bone volume fraction, trabecular number, and bone mineral content as well as a significant increase in marrow adipogenesis. Conversely, male mice lacked trabecular changes, but had statistically significant increases in cortical bone volume, thickness, and bone mineral density with equivalent total cortical volume. Since the year 2000, over 25 studies on more than 10,000 patients have sought to determine the correlation between leptin and bone mineral density. The results revealed a gender-specific correlation similar to that observed in our LysM transgenic animals. We hypothesize and show new evidence that regulation of myeloid lineage cells by leptin may facilitate their actions as an osteoimmunologic intermediate and contribute to leptin-regulated bone formation and metabolism in a gender-specific manner.  相似文献   

5.
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.  相似文献   

6.
Recent experimental studies indicate that Nitric Oxide (NO) is an important regulator of bone turnover in humans by exerting an anabolic effect on bone cell activity. NO is synthesised from the nonessential amino acid L-Arginine. Therefore, a supplementation with oral L-Arginine might be highly potent to affect bone cell activity via NO synthesis from L-Arginine. In our study we examined the effect of a six months oral supplementation with L-Arginine-hydrochloride (18 g) on bone metabolism in 15 healthy postmenopausal women. We analysed nitrogen excretion, markers of bone turnover and calcium concentration. The results show neither a change in serum calcium concentration nor in bone turnover as shown by bone markers. In conclusion, L-Arginine-hydrochloride supplementation at that concentration seems to have no effect on bone cell activity in healthy postmenopausal women.  相似文献   

7.
Fluctuating asymmetry in mice and rats: evaluation of the method   总被引:1,自引:0,他引:1  
Fluctuating asymmetry, which reflects small, random deviations from symmetry in otherwise bilaterally symmetrical characters, may be used as an indicator of developmental instability in humans and farm animals, and it may also be applicable as a stress indicator. We intended to find a method to allow the use of fluctuating asymmetry as a stress indicator in laboratory animals. That method had to be reproducible and reliable. Furthermore, its applicability in laboratory animals would be improved if it was possible to obtain measurements on the skin surface that correlated with results obtained by measuring the skeleton directly. Seven traits in mice and five traits in rats were evaluated for their applicability for measuring fluctuating asymmetry in mice and rats. Two out of the seven traits, i.e. the width of the joint between the third metatarsal bone and the digital bone on the hind paw, and the length of the incisor tooth at the top, were found to be reliable and reproducible for detecting fluctuating asymmetry in mice as well as in rats. Three out of the seven traits, i.e. the width of the carpal bones, the width of the joint between the tibia and the tarsal bones, and the length of the incisor tooth at the bottom, did express fluctuating asymmetry, but showed a poor day-to-day reproducibility. If the day-to-day reproducibility could be increased, these three traits might also be suitable for measuring fluctuating asymmetry in mice and rats. The last two traits, i.e. the length of ulna and the length of calcaneus plus metatarsal bone i.v., measured both on the skin surface and directly on the bone, did not express fluctuating asymmetry, and had a poor day-to-day reproducibility. These two traits are not suitable for measuring fluctuating asymmetry in mice and rats.  相似文献   

8.
During the Workshop in North Carolina, the in vivo metabolism, adduct formation and genotoxicity data available from rodent and human exposure to 1,3-butadiente (BD) were reviewed and they are summarized in the present report. BD is metabolized by cytochrome P-450-dependent monoxygenases to the primary metabolite 1,2-epoxybutene-3 (epoxybutene, EB). EB is subjected to further metabolism: oxidation to 1,2:3,4-diepoxybutane (DEB), hydrolysis to 3-butene-1,2-diol and conjugation to glutathione. The first pathway seems to prevail in mice while the latter is characteristic for rats and possibly for humans. Species differences exist in adduct formation of the monoepoxide to hemoglobin, for which the following pattern has been found: mice > rats > humans. Genotoxity of BD was found in mice with all applied tests; however, negative results were obtained in rats. In exposed humans, the cytogenetic studies in peripheral blood lymphocytes did not show genotoxic effects, although one report described elevated hprt variant levels in peripheral blood lymphocytes of exposed workers.

It was concluded that the presently available data are insufficient for the application of the parallelogram model to estimate genetic risk for humans. As an alternative approach, a tentative estimate of the doubling dose for induction of hprt mutations in somatic cells of mice and men was performed and the calculated values were surprisingly similar, i.e. 9000 ppmh. However, this estimate is burdened with a number of caveats which were discussed in detail. The working group identified a series of urgent research needs to provide the appropriate data for the application of the parallelogram model, such as identification of metabolic pathways in different rodent species and humans, metabolic studies in mice, rats and humans considering metabolic polymorphisms, studies of adducts to DNA and hemoglobin especially of DEB and other butadiene metabolites in rodents and humans, studies of mutational spectra (mutational fingerprinting) in somatic and germinal cells, confirmation of the human hprt mutation data, confirmation of the rodent malformation data, dose-response studies in rodent germ cell tests and studies on repair kinetics of mono-adducts induced by EB as opposed to repair of cross-links produced by DEB. Finally, it was suggested that the original parallelogram consisting of data from somatic cell studies in rodents and humans plus studies of heritable effects in rodents to extrapolate to germ cell risk for humans should be supplemented with studies in sperm of experimental animals and exposed men.  相似文献   


9.
Isotopic tracers have been used to examine lipid trafficking for many years, and data from those studies have typically yielded novel insight regarding the pathophysiology of dyslipidemia. Previous experimental designs were suitable for studies in humans because relatively large volumes of plasma could be regularly sampled. We have expanded on the earlier logic by applying high-throughput analytical methods that require reduced sample volumes. Specifically, we have examined the possibility of coupling gel-based separations of lipoproteins (e.g., lipoprint) with LC-MS/MS analyses of complex lipid mixtures as a way to routinely measure the labeling profiles of distinct lipids in discrete lipoprotein subfractions. We demonstrate the ability to measure the incorporation of [U-13C]oleate into triglycerides (TG), PLs (PL), and cholesterol esters (CE) in VLDL, LDL, and HDL particles in mice. Although rodent models of dyslipidemia are inherently different from humans because of alterations in enzyme activities and underlying metabolism, rodent models can be used to screen novel compounds for efficacy in altering a given biochemical pathway and therein enable studies of target engagement in vivo. We expect that it is possible to translate our approach for application in other systems, including studies in humans.  相似文献   

10.
Bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space and also for bedridden elderly people. Recent studies have indicated that the sympathetic nervous system plays a role in bone metabolism. This paper reviews findings concerning with sympathetic influences on bone metabolism to hypothesize the mechanism how sympathetic neural functions are related to bone loss in microgravity. Animal studies have suggested that leptin stimulates hypothalamus increasing sympathetic outflow to bone and enhances bone resorption through noradrenaline and β-adrenoreceptors in bone. In humans, even though there have been some controversial findings, use of β-adrenoblockers has been reported to be beneficial for prevention of osteoporosis and bone fracture. On the other hand, microneurographically-recorded sympathetic nerve activity was enhanced by exposure to microgravity in space as well as dry immersion or long-term bed rest to simulate microgravity. The same sympathetic activity became higher in elderly people whose bone mass becomes generally reduced. Our recent findings indicated a significant correlation between muscle sympathetic nerve activity and urinary deoxypyridinoline as a specific marker measuring bone resorption. Based on these findings we would like to propose a following hypothesis concerning the sympathetic involvement in the mechanism of bone loss in microgravity: An exposure to prolonged microgravity may enhance sympathetic neural traffic not only to muscle but also to bone. This sympathetic enhancement increases plasma noradrenaline level and inhibits osteogenesis and facilitates bone resorption through β-adrenoreceptors in bone to facilitate bone resorption to reduce bone mass. The use of β-adrenoblockers to prevent bone loss in microgravity may be reasonable.  相似文献   

11.
The relationship between hypocholesterolemia and anemia has been recognized in humans. However, no metabolic studies in humans have been reported, nor has an animal model been developed to investigate the effects of anemia on cholesterol metabolism. We have identified an animal model, the 'sex-linked anemic' (gene symbol, sla) mouse, characterized by iron deficiency anemia, to study the relationship between anemia and cholesterol metabolism. Results from our studies showed that the serum cholesterol was significantly lower in anemic male SLA mice compared to non-anemic littermates. The lower serum cholesterol observed in anemic SLA mice was related to a decreased in vivo hepatic cholesterol synthesis. However, the decreased hepatic cholesterol synthesis in anemic SLA mice was not due to a block at the primary regulatory site, the hydroxymethylglutaryl-CoA reductase, nor at one of the secondary regulatory sites: the acetoacetyl-CoA thiolase and hydroxymethylglutaryl-CoA synthase.  相似文献   

12.
High-density lipoproteins (HDL) play an important role in protection against atherosclerosis by mediating reverse cholesterol transport - the transport of excess cholesterol from peripheral tissues to the liver for disposal. SR-BI is a cell surface receptor for HDL and other lipoproteins (LDL and VLDL) and mediates the selective uptake of lipoprotein cholesterol by cells. Overexpression or genetic ablation of SR-BI in mice revealed that it plays an important role in HDL metabolism and reverse cholesterol transport and protects against atherosclerosis in mouse models of the disease. If it plays a similar role in humans then it may be an attractive target for therapeutic intervention. We will review some of the recent advances in the understanding of SR-BI's physiological role and cellular function in lipoprotein metabolism.  相似文献   

13.
Fibrillins are microfibril-forming extracellular matrix macromolecules that modulate skeletal development. In humans, mutations in fibrillins result in long bone overgrowth as well as other distinct phenotypes. Whether fibrillins form independent microfibrillar networks or can co-polymerize, forming a single microfibril, is not known. However, this knowledge is required to determine whether phenotypes arise because of loss of singular or composite functions of fibrillins. Immunolocalization experiments using tissues and de novo matrices elaborated by cultured cells demonstrated that both fibrillins can be present in the same individual microfibril in certain tissues and that both fibrillins can co-polymerize in fibroblast cultures. These studies suggest that the molecular information directing fibrillin fibril formation may be similar in both fibrillins. Furthermore, these studies provide a molecular basis for compensation of one fibrillin by the other during fetal life. In postnatal tissues, fibrillin-2 antibodies demonstrated exuberant staining in only one location: peripheral nerves. This surprising finding implicates distinct functions for fibrillin-2 in peripheral nerves, because a unique feature in humans and in mice mutant for fibrillin-2 is joint contractures that resolve over time.  相似文献   

14.
K Victorin 《Mutation research》1992,277(3):221-238
Ozone is a powerful oxidant, reactive to biomolecules. In aqueous solution it decomposes to give hydrogen peroxide, superoxide and hydroxy radicals which can take part in secondary reactions. Ozone is a disinfectant that inactivates both viruses and bacteria. Although other reactions are primarily responsible for the inactivation, cellular DNA is also damaged. Ozone is genotoxic to microorganisms, plants and cell cultures in vitro. The results from in vivo cytogenetic studies with laboratory animals after inhalation exposure are contradictory. Chromosome aberrations in lymphocytes, but not SCEs, have been demonstrated in Chinese hamsters but not in mice. Chromatid deletions were induced in pulmonary macrophages in rats. No cytogenetic effects have been reported for bone marrow cells or spermatocytes. The few experimental and epidemiological studies with human subjects do not allow a conclusion on the cytogenetic effects of ozone in lymphocytes in humans. No life-long cancer studies have been performed with ozone. However, after 4 and 6 months of inhalation exposure, lung adenomas were induced in strain A/J mice, but not in Swiss-Webster mice.  相似文献   

15.
16.
17.
The evolutionary history of humans comprises an important but small branch on the larger tree of ape evolution. Today’s hominoids—gibbons, orangutans, gorillas, chimpanzees, and humans—are a meager representation of the ape diversity that characterized the Old World from 23–5 million years ago. In this paper, I briefly review this evolutionary history focusing on features important for understanding modern ape and human origins. As the full complexity of ape evolution is beyond this review, I characterize major geographic, temporal, and phylogenetic groups using a few flagship taxa. Improving our knowledge of hominoid evolution both complicates and clarifies studies of human origins. On one hand, features thought to be unique to the human lineage find parallels in some fossil ape species, reducing their usefulness for identifying fossil humans. On the other hand, the Miocene record of fossil apes provides an important source for generating hypotheses about the ancestral human condition; this is particularly true given the dearth of fossils representing our closest living relatives: chimpanzees and gorillas.  相似文献   

18.
Evidence that leptin regulates bone turnover in part through a central nervous system (CNS)/beta-adrenergic system relay has driven attention towards the potential therapeutic benefits of beta-adrenergic blockade to improve bone mass and strength. beta2- adrenergic receptor-mediated signaling in osteoblasts inhibits bone formation and triggers RANKL-mediated osteoclastogenesis and bone resorption. Mouse models of adrenergic-deficiency, particularly the mouse lacking the beta2-adrenergic receptor, have increased bone mass, more specifically increased trabecular bone volume. In turn, beta-blockers, such as propranolol, were reported to inhibit ovariectomy-induced bone loss. In contrast, a number of experiments in mice and rats suggest that inhibition of beta-adrenergic receptor-mediated signaling does not improve, and could actually be detrimental, for bone mass and microstructure. In humans, epidemiological observations suggested that users of beta-blockers have higher bone mineral density (BMD) and/or a reduced risk of fractures, yet not all studies were concordant. Here we review the evidence for a role of the adrenergic system in the regulation of bone metabolism in vitro and in vivo and provide some new evidence for a dual role of beta-adrenergic receptors 1 and 2 on bone turnover. Furthermore, we will examine the similarities and disparities that may exist in the effects of beta-adrenergic and PTH stimulation on bone metabolism.  相似文献   

19.
Most genetic studies assume that the function of a genetic variant is independent of the parent from which it is inherited, but this is not always true. The best known example of parent-of-origin effects arises with respect to alleles at imprinted loci. In classical imprinting, characteristically, either the maternal or paternal copy is expressed, but not both. Only alleles present in one of the parental copies of the gene, the expressed copy, is likely to contribute to disease. It has been postulated that imprinting is important in central nervous system development, and that consequently, imprinted loci may be involved in schizophrenia. If this is true, allowing for parent-of-origin effects might be important in genetic studies of schizophrenia. Here, we use genome-wide association data from one of the world’s largest samples (N = 695) of parent schizophrenia-offspring trios to test for parent-of-origin effects. To maximise power, we restricted our analyses to test two main hypotheses. If imprinting plays a disproportionate role in schizophrenia susceptibility, we postulated a) that alleles showing robust evidence for association to schizophrenia from previous genome-wide association studies should be enriched for parent-of-origin effects and b) that genes at loci imprinted in humans or mice should be enriched both for genome-wide significant associations, and in our sample, for parent-of-origin effects. Neither prediction was supported in the present study. We have shown, that it is unlikely that parent-of-origin effects or imprinting play particularly important roles in schizophrenia, although our findings do not exclude such effects at specific loci nor do they exclude such effects among rare alleles.  相似文献   

20.
Austad SN 《Aging cell》2007,6(2):135-138
This Hot Topics review, the first in a projected annual series, discusses those articles, published in the last year, which seem likely to have a major impact on our understanding of the aging process in mammals and the links between aging and late-life illnesses. The year's highlights include studies of oxidation damage in the very-long-lived naked mole-rat, and of caloric restriction in monkeys, humans, and growth hormone-unresponsive mice. Two studies of resveratrol, one showing its ability to extend lifespan in a short-lived fish, the other demonstrating beneficial effects in mice subjected to a diet high in fat, may well be harbingers of a parade of intervention studies in the coming decade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号