首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infestation of sterilised or natural soil with Pseudomonas tomato at inoculum concentrations of 102 to 109 propagules/ml inhibited germination of seeds and caused damping-off of tomato cv. VF-198, susceptible to bacterial speck. Infestation with saprophytic P. fluorescens at an inoculum concentration of 109 propagules/ml did not cause any damage. Germination of seeds of tomato cv. Rehovot-13, resistant to P. tomato, was not affected in P. tomato-infested natural soil, but was inhibited when tested in P. tomato-infested, sterilised soil. Tomato plants which were symptomless from sowing to the flowering stage when growing in infested soil had 20–30% less foliage than plants growing in uninfested soil.  相似文献   

2.
This study was undertaken to develop tomato plants with broad resistanceto tospoviruses which are a major limiting factor to tomato productionworldwide. A nontransgenic tomato line Stevens-Rodale (S-R), six transgenictomato lines expressing the nucleocapsid (N) protein gene of the lettuceisolate of tomato spotted wilt virus (TSWV-BL), and progeny of the crosses between S-Rand three of the transgenic lines homozygous for the N gene were evaluated fortheir resistance to tospovirus infection in greenhouse inoculation tests. S-Rhas the Sw-5 gene that confers resistance to several TSWVisolates. The six transgenic lines showed high levels of resistance wheninoculated with either TSWV-BL or a tomato isolate from Hawaii (TSWV-H).However, these same plants were highly susceptible to the Brazilian isolate ofgroundnut ringspot virus (GRSV-BR). Plants with the Sw-5gene were resistant to TSWV-BL and GRSV-BR, but were susceptible to TSWV-H.When inoculated with any of the three viruses, the F1 progeny of thecrosses exhibited a susceptible, tolerant, or resistant phenotype with a higherproportion of the plants being either tolerant or resistant. When F2progeny from F1 resistant plants of each cross were inoculated withany of the three viruses, a higher proportion of tolerant and resistant plantswas observed compared to the F1 progeny. Our results show thepotential to obtain broad resistance to tospoviruses by combining transgenicand natural resistance in a single plant.  相似文献   

3.
Two tomato cultivars, Ontario 7710 and Rehovot 13, and their F1, F2, F3 and backcross progenies were screened for resistance to bacterial speck (Pseudomonas syringae pv. tomato) of tomato. The results support the hypothesis that the resistance factors contained in the two parents are non-allelic and controlled by two different genes.  相似文献   

4.
Candidatus Liberibacter solanacearum haplotype B (CLsoB) is an economically important pathogen of tomato (Solanum lycopersicum L.) crops in New Zealand and Central and North America. Currently, resistant cultivars of tomato are not available as a management tactic because breeding programmes lack sources of resistance. Therefore, the objective of this study was to identify sources of resistance in tomato to CLsoB. Forty-six landraces of tomato were collected from several states in Mexico and were inoculated with CLsoB using 20 infested adults of Bactericera cockerelli per plant. Two assays were done over two years under greenhouse conditions. In the first trial, landraces FC22 and FC44 showed a significantly higher proportion of resistant plants, less symptom severity and longer incubation time compared with the other forty-four landraces and two susceptible cultivars. In the second assay, resistance to CLsoB of the landraces FC22 and FC44 was confirmed because they had again significantly greater numbers of resistant plants, less symptom severity, relative lower CLsoB titers and longer incubation time relative to the other genotypes. All plants considered resistant from both assays had DNA of CLsoB. Results indicate that all resistant plants from these landraces are promising sources for the development of tomato cultivars with resistance to CLsoB.  相似文献   

5.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

6.
The two-spotted spider mite (Tetranychus urticae Koch) is an important pest of tomato (Lycopersicon esculentum Mill.) crops in temperate regions as this spider mite has a very large capacity for population increase and causes severe tomato yield losses. There is no described tomato cultivar fully resistant to this pest, although resistant accessions have been reported within the green-fruited tomato wild species L. pennellii (Corr.) D’Arcy and L. hirsutum Humb. & Bonpl. We observed a L. pimpinellifolium (Jusl.) Mill. accession, ‘TO-937’, which seemed to be completely resistant to mite attacks and we crossed it with the susceptible L. esculentum cultivar. ‘Moneymaker’ to obtain a family of generations consisting of the two parents, the F1, the F2, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium. This family was evaluated for mite resistance in a polyethylene greenhouse using an experimental design in 60 small complete blocks distributed along 12 double rows. Each block consisted of five F2 plants in one row and one plant of each of the two parents, the F1, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium in the adjacent row. Plants at the 10–15 leaf stage were artificially infested by putting on them two pieces of French bean leaf heavily infested with T. urticae. After two months, evaluations of infestation were made by visual observation of mite nets and leaf damage. Plants that were free of signs of mite reproduction on the top half were considered as resistant, plants with silky nets only on their basal leaves, intermediate, and plants with mite reproduction on both basal and top canopies were scored as susceptible. Dominance for resistance appeared because all the ‘To-937’, BC1 to L. pimpinellifolium, and F1 plants were resistant. Not all ‘Moneymaker’ plants behaved as susceptible because 35% of plants were intermediate. In the BC1 to L. pimpinellifolium and the F2, most plants were scored as resistant, only 7 % BC1 and 3 % F2 plants were intermediate, and a single F2 plant (0.3 %) was susceptible. With these figures, resistance seemed to be controlled by either four or two genes according to whether segregation in the BC1 or in the F2, respectively, were considered. These results could in part be explained because of appearance of negative interplot interference due to the high frequency of resistant genotypes within most of the generations. Therefore, the family was evaluated again but using a different experimental design. In the new experiment, 16 ‘TO-937’, 17 ‘Moneymaker’, 17 F1, 37 BC1 to L. pimpinellifolium, 38 BC1 to L. esculentum, and 125 F2 plants were included. Each of these test plants was grown besides a susceptible ‘Moneymaker’ auxilliary plant that served to keep mite population high and homogeneous in the greenhouse. Negative interplot interference was avoided with this design and all the ‘TO-937’, F1, and BC1 to L. pimpinellifolium plants were resistant, all ‘Moneymaker’ test plants were susceptible, and 52 % BC1 to L. esculentum and 25 % F2 plants were susceptible, which fitted very well with the expected for resistance governed by a single dominant gene. The simple inheritance mode found will favour sucessful introgression of mite resistance into commercial tomatoes from the very close relative L. pimpinellifolium.  相似文献   

7.
Tomato bacterial wilt (BW) incited by Ralstonia solanacearum is a constraint on tomato production in tropical, subtropical and humid regions of the world. In this paper, we present the results of a research aimed at the identification of PCR-based markers amplified fragment length polymorphism (AFLP) linked to the genes that confer resistance to tomato BW. To this purpose, bulked segregant analysis was applied to an F2 population segregating for the BW resistant gene and derived from the pair-cross between a BW resistant cultivar T51A and the susceptible cultivar T9230. Genetic analysis indicated that tomato BW was conferred by two incomplete dominant genes. A CTAB method for total DNA extraction, developed by Murray and Thompson with some modifications was used to isolation the infected tomato leaves. Thirteen differential fragments were detected using 256 primer combinations, and two AFLP markers were linked to the BW resistance. Subsequently, the AFLP markers were converted to co-dominant SCAR markers, named TSCARAAT/CGA and TSCARAAG/CAT. Linkage analysis showed that the two markers are on the contralateral side of TRSR-1. Genetic distance between TSCARAAT/CGA and TRS-1 was estimated to 4.6 cM, while 8.4 cM between TSCARAAG/CAT and TRS-1.  相似文献   

8.
We report the tagging of a powdery mildew [Leveillula taurica (Lév.) Arnaud.] resistance gene (Lv) in tomato using RAPD and RFLP markers. DNA from a resistant (cv Laurica) and a susceptible cultivar were screened with 300 random primers that were used to amplify DNA of resistant and susceptible plants. Four primers yielded fragments that were unique to the resistant line and linked to the resistance gene in an F2 population. One of these amplified fragments, OP248, with a molecular weight of 0.7 kb, was subsequently mapped to chromosome 12, 1 cM away from CT134. Using RFLP markers located on chromosome 12, it was shown that approximately one half of chromosome 12 (about 42 cM), in the resistant variety is comprised of foreign DNA, presumably introgressed with the resistance gene from the wild species L. chilense. Further analysis of a backcross population revealed that the Lv gene lies in the 5.5-cM interval between RFLP markers, CT211 and CT219. As a prelude to map-based cloning of the Lv gene, we are currently enriching the density of markers in this region by a combination of RAPD primers and other techniques.  相似文献   

9.
A PCR-based codominant marker has been developed which is tightly linked to Mi, a dominant genetic locus in tomato that confers resistance to several species of root-knot nematode. DNA from tomato lines differing in nematode resistance was screened for random amplified polymorphic DNA markers linked to Mi using decamer primers. Several markers were identified. One amplified product, REX-1, obtained using a pair of decamer primers, was present as a dominant marker in all nematode-resistant tomato lines tested. REX-1 was cloned and the DNA sequences of its ends were determined and used to develop 20-mer primers. PCR amplification with the 20-mer primers produced a single amplified band in both susceptible and resistant tomato lines. The amplified bands from susceptible and resistant lines were distinguishable after cleavage with the restriction enzyme Taq I. The linkage of REX-1 to Mi was verified in an F2 population. This marker is more tightly linked to Mi than is Aps-1, the currently-used isozyme marker, and allows screening of germplasm where the linkage between Mi and Aps-1 has been lost. Homozygous and heterozygous individuals can be distinguished and the procedure can be used for rapid, routine screening. The strategy used to obtain REX-1 is applicable to obtaining tightly-linked markers to other genetic loci. Such markers would allow rapid, concurrent screening for the segregation of several loci of interest.  相似文献   

10.
Summary The Alternaria stem canker resistance locus (Asc-locus), involved in resistance to the fungal pathogen Alternaria alternata f. sp. lycopersici and in insensitivity to host-specific toxins (AAL-toxins) produced by the pathogen, was genetically mapped on the tomato genome. Susceptibility and resistance were assayed by testing a segregating F2 population for sensitivity to AAL-toxins in leaf bioassays. Linkage was observed to phenotypic markers solanifolium and sunny, both on chromosome 3. For the Asc-locus, a distance of 18 centiMorgan to solanifolium was calculated, corresponding to position 93 on chromosome 3. This map position of the resistance locus turned out to be the same in three different resistant tomato accessions, one Dutch and two American, that are at least 40 years apart. AAL-toxin sensitivity in susceptible and resistant tomato genotypes was compared with AAL-toxin sensitivity in a non-host Nicotiana tabacum during different levels of plant cell development. In susceptible and resistant tomato genotypes, inhibitory effects were demonstrated at all levels, except for leaves of resistant genotypes. However, during pollen and root development, inhibitory effects on susceptible genotypes were larger than on resistant genotypes. In the non-host Nicotiana tabacum, hardly any effects of AAL-toxins were demonstrated. Apparently, a cellular target site is present in tomato, but not in Nicotiana tabacum. It was concluded that three levels of AAL-toxin sensitivity exist: (1) a susceptible host sensitivity, (2) a resistant host sensitivity, (3) a non-host sensitivity, and that the resistance mechanism operating in tomato is different from that operating in Nicotiana tabacum.  相似文献   

11.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

12.
R. T. Besford 《Plant and Soil》1978,50(1-3):179-191
Summary Three tomato varieties, Amberley Cross, VF-145 and VF-13L (the last two reported to show K-deficiency symptoms independent of the amount of K applied) were grown in sand with three concentrations of applied nutrient K at a constant high level of Ca. There was a varietal difference in the K concentration and total K uptake into the plants. The Mg concentrations in the fruit were unaffected by K nutrition but the concentrations fell in the leaves of all varieties when the nutrient K was increased above 0.28 meq/l.While the concentration of Ca in the leaves of Amberley Cross was not significantly reduced by raising the concentration of K in the nutrient feed, there was a reduction in the varieties VF-145 and VF-13L. Maximum concentrations of Ca were present in fruit of all varieties receiving 2 meq K+/l, and that present in fruit of Amberley Cross was significantly higher than in fruit from either VF-145 or VF-13L. Comparing the varieties in the 10.2 meq K+/l treatment, fruit of VF-13L contained the lowest concentration and total amount of Ca, and had the highest incidence of blossom-end rot. VF-13L was the most susceptible to blossom-end rot, particularly in the highest K treatment, while Amberley Cross was the only variety free of symptoms in all three nutrient treatments.  相似文献   

13.
 We report the molecular mapping of the py-1 gene for resistance to corky root rot [Pyrenochaeta lycopersici (Schneider and Gerlach)] in tomato using RAPD and RFLP marker analysis. DNA from near-isogenic lines (NILs) of tomato differing in corky root rot resistance was screened with 575 random oligonucleotide primers to detect polymorphic DNAs linked to py-1. Three primers (OPW-04, OPC-02, OPG-19) revealed polymorphisms between the NILs. Twelve resistant and eight susceptible DNA pools derived from segregating F3 families were used to confirm that the RAPD markers were linked to the py-1 gene. Two of the linked amplified fragments, corresponding to OPW-04 and OPC-02, were subsequently cloned and mapped on the tomato molecular linkage map as RFLPs. These clones were located between TG40 and CT31 on the short arm of chromosome 3. Further analysis with selected RFLP markers showed that 7% (8.8 cM) of chromosome 3 of the resistant line ‘Moboglan’ was introgressed from the L. peruvianum donor parent. Three RFLP markers (TG40, TG324, and TG479) from the introgressed part of chromosome 3 were converted to cleaved amplified polymorphism (CAP) markers for use in a polymerase chain reaction (PCR) assay. These PCR markers will allow rapid large-scale screening of tomato populations for corky root rot resistance. Received: 2 January 1998 / Accepted: 12 January 1998  相似文献   

14.
Life history parameters including longevity, developmental time, and reproduction were determined for whiteflies, Trialeurodes vaporariorum (Westwood), kept in clip-on cages on susceptible parent, Lycopersicon esculentum, resistant parent, L. hirsutum glabratum, and intermediate breeding lines of tomato. Using the Lewontin triangular reproductive function, the intrinsic rate of increase (rm) was calculated for each genotype. This is an elegant tool for detecting resistance, as it incorporates all salient factors of life history. Comparing rm to the other parameters measured, selection criteria were chosen. Developmental time is not a suitable selection criterion as it varies very little even between the most susceptible and the most resistant genotypes. Additionally, developmental time of T. vaporariorum offspring was found to be highly significantly correlated to parental age on all tomato genotypes except L. hirsutum glabratum. Total reproduction, truncated population counts, and longevity appear good criteria for selection. This test, focusing on antibiotic factors, shows large differences between the resistant and susceptible parent genotypes, but much smaller differences between the breeding lines and the susceptible parent. Earlier screenings relying on a variety of tests appear to have maintained antixenotic rather than antibiotic properties in the breeding lines.  相似文献   

15.
Cucumber mosaic virus (CMV) infects a wide variety of crop plants and in tomato (Lycopersicon esculentum Mill.) causes significant economic losses in many growing regions, particularly the Mediterranean. The objective of the present study was to identify the number and map locations of genes controlling resistance to CMV in breeding lines (BC1–inbreds) derived from the related wild species L. chilense. These lines also carried the gene Tm-2 a for resistance to ToMV, which facilitated the interpretation of disease symptoms. The segregation for CMV resistance in the BC2F1 and BC2F2 generations, following mechanical inoculation with subgroup-I isolates, was consistent with expectations for a single dominant gene, for which the symbol Cmr (cucumber mosaic resistance) was given. Resistant and susceptible BC1-inbreds were analyzed with RFLP and isozyme markers to identify genomic regions introgressed from L. chilense. The only L. chilense-specific markers found were on chromosome 12; some resistant lines contained a single introgression comprising the entire short arm and part of the long arm of this chromosome, while others contained a recombinant derivative of this introgression. The chromosome 12 markers were significantly associated with CMV resistance in both qualitative and quantitative models of inheritance. The qualitative analysis, however, demonstrated that CMV resistance was not expressed as a reliable monogenic character, suggesting a lack of penetrance, significant environmental effects, or the existence of additional (undetected) resistance factors. In the quantitative analysis, the marker interval TG68 – CT79 showed the most significant association with CMV resistance. No association between CMV resistance and the Tm-2 a gene was observed. These breeding lines are potentially useful sources of CMV resistance for tomato improvement, in which context knowledge of the map location of Cmr should accelerate introgression by marker-assisted selection. Received: 9 August 1999 / Accepted: 22 December 1999  相似文献   

16.
Adult Dermestes maculatus were tested for resistance by exposing them to films of lindane in oil on filter papers. Insects which survived a discriminating dose, designed to knock down 100% of susceptible insects, were classed as resistant. Of 42 strains intercepted on imports or collected from infested poultry houses, 34 were found to be resistant when first tested. The F1 progeny of survivors from 19 of these resistant strains were also exposed to the discriminating dose. Significant increases in survival confirmed the presence of resistance in 18 strains.  相似文献   

17.
Summary Inheritance of resistance to cowpea aphid, Aphis craccivora Koch, in three resistant cultivars of cowpea, Vigna unguiculata (L.) Walp, was studied. The parents, F1 and F2 population were grown in an insect-proof screenhouse. Each 3-day-old seedling was infested with 10 apterous adult aphids. Seedling reaction was recorded when the susceptible check was killed. The segregation data revealed that the resistance of ICV11 and TVU310 is governed by single dominant genes. All the F2 seedlings of the cross ICV10xTVU310 were resistant, indicating that they have the same gene for resistance. However, the F2 populations from the crosses ICV10xICV11 and ICV11xTVU310 segregated in a ratio of 151, indicating that the dominant genes in ICV11 and TVU310 are non-allelic and independent of each other. The resistance gene of ICV10 and TVU310 is designated as Ac1 and that of ICV11 as Ac2.  相似文献   

18.
Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus was identified in accessions of wild relatives of tomato such as S. habrochaites LYC4. In order to identify loci involved in quantitative resistance (QTLs) to B. cinerea, a population of 174 F2 plants was made originating from a cross between S. lycopersicum cv. Moneymaker and S. habrochaites LYC4. The population was genotyped and tested for susceptibility to grey mold using a stem bioassay. Rbcq1, a QTL reducing lesion growth (LG) and Rbcq2, a QTL reducing disease incidence (DI) were identified. Rbcq1 is located on Chromosome 1 and explained 12% of the total phenotypic variation while Rbcq2 is located on Chromosome 2 and explained 15% of the total phenotypic variation. Both QTL effects were confirmed by assessing disease resistance in two BC2S1 progenies segregating for either of the two QTLs. One additional QTL, Rbcq4 on Chromosome 4 reducing DI, was identified in one of the BC2S1 progenies. F2 individuals, homozygous for the Rbcq2 and Rbcq4 alleles of S. habrochaites showed a reduction of DI by 48%. QTLs from S. habrochaites LYC4 offer good perspectives for breeding B. cinerea resistant tomato cultivars. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Modern plant breeding heavily relies on the use of molecular markers. In recent years, next generation sequencing (NGS) emerged as a powerful technology to discover DNA sequence polymorphisms and generate molecular markers very rapidly and cost effectively, accelerating the plant breeding programmes. A single dominant locus, Frl, in tomato provides resistance to the fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL), causative agent of Fusarium crown and root rot. In this study, we describe the generation of molecular markers associated with the Frl locus. An F2 mapping population between an FORL resistant and a susceptible cultivar was generated. NGS technology was then used to sequence the genomes of a susceptible and a resistant parent as well the genomes of bulked resistant and susceptible F2 lines. We zoomed into the Frl locus and mapped the locus to a 900 kb interval on chromosome 9. Polymorphic single-nucleotide polymorphisms (SNPs) within the interval were identified and markers co-segregating with the resistant phenotype were generated. Some of these markers were tested successfully with commercial tomato varieties indicating that they can be used for marker-assisted selection in large-scale breeding programmes.  相似文献   

20.
The selection of TSWV resistant individuals can be facilitated by molecular markers. RAPD analysis was carried out on three forms (Stevens × Rodade — resistant; Rey de los Tempranos — moderately tolerant; Potentat — susceptible) with the use of 271 primers. Out of 271 primers 28 generated stable polymorphism and so they were tested for linkage to resistance gene. Bulk segregant analysis (BSA) was applied to F2 segregating progeny developed from resistant × susceptible parents. As a result, 5 primers enabling us to distinguish between resistant and susceptible forms were detected. Only one of them had previously been reported by Chague et al. (1996). The analysis should be repeated on a larger population to confirm the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号