首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Determination of a Critical Nitrogen Dilution Curve for Winter Oilseed Rape   总被引:20,自引:2,他引:18  
Several controlled environmental and field experiments werecarried out to define the critical nitrogen dilution curve forwinter oilseed rape, cultivar Goeland. This curve is describedby the following power equation:N=4.48 W-0.25,whereNis the totalnitrogen concentration in the shoot biomass andWthe shoot biomass.This curve has been validated over the range of shoot dry matterof 0.88 to 6.3 t ha-1. For lower shoot biomasses this equationoverestimated the critical nitrogen concentration; we proposea constant value of 4.63 (Nis expressed in reduced N, whichis a more stable N fraction in the shoot at these stages ofdevelopment). These results have been validated in several pedoclimaticconditions in France on a single variety in 1994 and 1995. Thehigher position of this curve relative to the C3species referencecurve (Greenwoodet al.,Annals of Botany67: 181–190, 1990)can be explained by the experimental conditions obtained byGreenwoodet al. (1990); therefore, all their rape data are ratherclose to the critical curve that we propose. The differencesfound between wheat and winter oilseed rape critical N dilutioncurves correspond to their respective leaf:stem dry matter ratioand the specific leaf loss phenomenon occuring in rape. Winteroilseed rape has a higher capacity of N accumulation in itsshoot than wheat for the same aerial dry matter. The proportionof nitrate in shoots rises with the nitrogen nutrition index(N.N.I.) and is more important for rapeseed than for wheat forthe same N.N.I. This difference is especially high at the beginningof flowering when the shade provided by the canopy of rapeseedflowers decreases nitrate reductase activity.Copyright 1998Annals of Botany Company Winter oilseed rape;Brassica napusL.; plant N concentration; nitrate; reduced N; shoot biomass; critical nitrogen concentration; dilution curve; N productivity.  相似文献   

2.
The role of nitrogen-efficient cultivars in sustainable agriculture   总被引:4,自引:0,他引:4  
To improve nitrogen (N) efficiency in agriculture, integrated N management strategies that take into consideration improved fertilizer, soil, and crop management practices are necessary. This paper reports results of field experiments in which maize (Zea mays L.) and oilseed rape (Brassica napus L.) cultivars were compared with respect to their agronomic N efficiency (yield at a given N supply), N uptake efficiency (N accumulation at a given N supply), and N utilization efficiency (dry matter yield per unit N taken up by the plant). Under conditions of high N supply, significant differences among maize cultivars were found in shoot N uptake, soil nitrate depletion during the growing season, and the related losses of nitrate through leaching after the growing season. Experiments under conditions of reduced N supply indicated a considerable genotypic variation in reproductive yield formation of both maize and oilseed rape. High agronomic efficiency was achieved by a combination of high uptake and utilization efficiency (maize), or exclusively by high uptake efficiency (rape). N-efficient cultivars of both crops were characterized by maintenance of a relatively high N-uptake activity during the reproductive growth phase. In rape this trait was linked with leaf area and photosynthetic activity of leaves. We conclude that growing of N-efficient cultivars may serve as an important element of integrated nutrient management strategies in both low- and high-input agriculture.  相似文献   

3.
We investigated the response of spring wheat and oilseed rape to nitrogen (N) supply, focusing on the critical period for grain number definition and grain filling. Crops were grown in containers under a shelter and treated with five combinations of applied N. Wheat and oilseed rape produced comparable amounts of biomass and yield when corrected for the costs of biomass synthesis (SC). From the responses of biomass and yield to late N applications and the apparent contribution of mobilised biomass to yield, it seems that the yield of oilseed rape was more source-limited during grain filling than that of wheat, particularly at the medium and high N levels. Both species recovered equal amounts of N from the total available N in the soil and had similar N use efficiencies, expressed as yield per unit of N absorbed. However, oilseed rape had higher efficiency to convert absorbed N in biomass, but lower harvest index of N than wheat. Oilseed rape had similar or lower root biomass than wheat, depending on N level, but higher root length per unit soil volume and specific root length. The specific uptake rate of N per unit root dry weight during the critical period for grain number determination was higher in oilseed rape than in wheat. In wheat, N limitation affected growth through a similar or lower reduction in radiation use efficiency corrected for synthesis costs (RUESC) than in the cumulative amount of intercepted photosynthetically active radiation (IPARc). In oilseed rape, lower growth due to N shortage was associated more with RUESC than IPARc, during flowering while during grain filling both components contributed similarly to decreased growth. RUESC and the concentration of N in leaves and inflorescence (LIN%) decreased from flowering to maturity and were curvilinearly related. Oilseed rape tended to have higher RUESC than wheat at high N supply during the critical period for grain number determination, and generally lower during grain filling. The reasons for these differences and possibilities to increase yield potential are discussed in terms of the photosynthetic efficiency of the different organs and changes in source–sink ratio during reproductive stages. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

5.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

6.
Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops   总被引:31,自引:0,他引:31  
A set of N-fertilization field experiments was used to determinethe 'critical nitrogen concentration', i.e, the minimal concentrationof total N in shoots that produced the maximum aerial dry matter,at a given time and field situation. A unique 'critical nitrogendilution curve' was obtained by plotting these concentrationsNct (% DM) vs. accumulated shoot biomass DM (t ha-1). It couldbe described by the equation: Nct = 5·35DM-0·442 when shoot biomass was between 1·55 and 12 t ha-1. Anexcellent fit was obtained between model and data (r2 = 0·98,15 d.f.). A very close relationship was found using reducedN instead of total N, because the nitrate concentrations inshoots corresponding to critical points were small. The criticalcurve was rather close to those reported by Greenwood et al.(1990) for C3 plants. However, this equation did not apply whenshoot biomass was less than 1·55 t ha-1. In this case,the critical N concentration was independent of shoot biomass:the constant critical value Nct = 4·4% is suggested forreduced-N. The model was validated in all the experimental situations,in spite of large differences in growth rate, cultivar, soiland climatic conditions; shoot biomass varying from 0·2to 14 t ha-1. Plant N concentration was found to vary by a factor of fourat a given shoot biomass level. In the heavily fertilized treatments,shoot N concentration could be 60% higher than the criticalconcentration. Most (on average 80%) of the extra N accumulatedwas in the form of reduced N. The proportion of nitrate to totalN in shoot mainly depended on the crop stage of development.It was independent of the nitrogen nutrition level.Copyright1994, 1999 Academic Press Winter wheat, Triticum aestivum, arable crops, plant N concentration, aerial biomass, critical nitrogen, dilution curve, fertilization, reduced N, nitrate  相似文献   

7.
We studied the response of maize (Zea mays L. cv. Anjou 256)to a simultaneous, but separated supply of ammonium and nitrate(localized supply, LS). A split-root system was used to supplyhalf of the roots with ammonium and the other half with nitrate.A homogeneously distributed supply of both nitrogen forms (HS)was the control treatment. Seedlings were grown for 12 d fromthe two-leaf to the three-leaf stage in hydroponics at threepH levels (4, 5·5 and 7). The total N concentration was3 mol m-3. The split-root system was established by removingthe seminal root system and using only four nodal roots perplant. Total root length and root surface area were recordedautomatically with a modified Delta- T area meter. Other morphologicalroot traits (such as main axis length and diameter, number,density, and length of laterals) were recorded manually. Uptakeof ammonium and nitrate was measured by the depletion of thenutrient solution. As compared with LS, HS was superior in shootand root DM, total root length and root surface area, ammoniumand nitrate uptake and shoot nitrogen concentration, irrespectiveof pH level. This indicates that, also under field conditions,mixed ammonium and nitrate fertilization is only beneficialto plant growth if both N forms are evenly distributed in thesoil. At both HS and LS, ascending pH increased the ammonium:nitrateuptake ratio. At LS, declining pH induced a considerable shiftin the distribution of root DM, root length, and root surfacearea the nitrate-fed compartment.Copyright 1993, 1999 AcademicPress Maize, Zea may L., ammonium, nitrate, pH, root morphology, split-root  相似文献   

8.
冬小麦等4种作物对铵,硝态氮的吸收能力   总被引:5,自引:1,他引:4  
采用水培试验探讨了冬小麦、大豆、油菜和莴笋4种作物对硝、铵态氮的相对吸收能力以及这两种氮源对它们生长发育的影响。试验表明:(1)不同氮源对供试作物的生长发育影响极大。供给硝态氮,这些作物生长发育良好,供给等量的NO^-3和NH^-4(1:1)时,蔬菜作物莴笋生长量下降幅度最大;供给铵态氨,莴笋和大豆极为敏感,供给NO^-3时莴笋吸氮量显著高于供给等氮量NO^-3和NH^+4,莴上麦供给等量NO^-  相似文献   

9.
The uptake and partitioning of nitrogen (N) by maize infectedwith the parasitic angiosperm,Striga hermonthicawas investigatedin sand culture in a glasshouse. The purpose was to determinethe effect ofStrigaon N uptake and partitioning in maize. Maizewas grown at 22, 66 and 133 mg N per plant and sampled fivetimes. There was no significantStrigaxN interaction in any measuredresponse. Leaf dry matter ofStriga-infected maize, averagedover all N treatments, was 92% that of uninfected maize at thefour-leaf stage but by the 18-leaf stage it had decreased to58%. Similarly, stem dry matter of infected maize which was91% that of uninfected maize at the four-leaf stage was only42% at the 18-leaf stage. Root dry matter was similar for infectedand uninfected maize. N concentration in the leaf, stem androot declined asymptotically from the first to the last samplingdate for both infected and uninfected maize. The asymptoticvalue of N concentration inStriga-infected maize was 16% greaterin the leaf, 55% in the stem, and 21% in the root than in uninfectedmaize. The concentration of N inStrigawas higher than in maizeat the 16- and 18-leaf stages. Uptake of N was similar for infectedand uninfected plants at the four–eight leaf stage butat the eight–12 leaf stage, N uptake by infected maizewas 52% that of uninfected maize. However, the proportion oftotal plant nitrogen partitioned to the root was greater (P<0.001)forStriga-infected maize. These results showed that the extentto whichS. hermonthicareduced maize growth and N uptake, butincreased the proportion of N partitioned to the roots, didnot depend on the rate of N fertilizer applied.Copyright 1998Annals of Botany Company Maize; nitrogen; partitioning;Striga hermonthica; uptake.  相似文献   

10.
STEER  B. T. 《Annals of botany》1982,49(2):191-198
Species differ in the relationship of nitrate reductase activityto nitrate uptake. In Capsicum annuum different diurnal patternsof leaf nitrate reductase activity and nitrate uptake have beenreported. As a consequence, the relationship of free nitratein the plant to nitrate supplied has a higher level of significancethan has reduced nitrogen to nitrate supplied. In Zea mays ithas been reported that leaf nitrate reductase activity respondsdirectly to nitrate translocation to the leaf and in this speciesthe relationship of greatest significance is reduced nitrogencontent to nitrate supplied. In both species, and also in Cucumis melo, the proportion oftotal plant free nitrate and reduced nitrogen in the roots decreases,and in the stem increases, with increasing nitrate supplied. The accumulation of free nitrate in leaves is accompanied bya quantitatively different relationship between reduced nitrogenand dry weight compared to leaves not accumulating nitrate. Capsicum annuum. L., Cucumis melo L., melon, Zea mays L., maize, sweet corn, nitrate reductase, nitrate uptake  相似文献   

11.
Despite a high nitrate uptake capacity, the nitrogen use efficiency (NUE) of oilseed rape is weak due to a relatively low N remobilization from vegetative (mostly leaves) to growing parts of the plant. Thus, this crop requires a high rate of N fertilization and leaves fall with a high N content. In order to reduce the rate of N fertilization and to improve the environmental impact of oilseed rape, new genotypes could be selected on their capacity to mobilize the foliar N. Various indicators of leaf senescence in oilseed rape were analysed during plant growth, as well as during senescence induced by N deprivation. Metabolic changes in leaves of increasing age were followed in N-supplied and N-deprived rosettes by measuring chlorophyll, total N, and soluble protein contents. Similarly, the expression of genes known to be up-regulated (SAG12) or down-regulated (Cab) during leaf senescence was monitored. The amount of soluble proteins per leaf was a better indicator of leaf senescence than chlorophyll or total N content, but was not evaluated as an accurate indicator under conditions of N deprivation. On the other hand, up-regulation of SAG12 concomitantly with down-regulation of Cab in the leaf revealed the spatial and temporal progression of leaf senescence in oilseed rape. This study shows, for the first time at the whole plant level, that the SAG12/Cab gene expressions match the sink/source transition for N during both developmental and nutrient stress-induced leaf senescence.  相似文献   

12.
冬小麦/夏玉米轮作体系中土壤氮素矿化及预测   总被引:19,自引:2,他引:17  
应用田间试验结果研究了冬小麦和夏玉米生长期的土壤氮素矿化量,并用间隙淋洗好气培养试验结合一级动力学模型对田间氮素矿化量进行了预测。结果表明,土壤氮素矿化量在年际间和作物间的变异很大,夏玉米季一般高于冬小麦季,从而导致夏玉米季施用氮肥的增产作用不明显,冬小麦季矿化量占当季作物最高吸氮量的31%~60%,夏玉米季占62%~108%,加上起始Nmin的供氮,造成了作物产量尤其是夏玉米产量对施入氮肥反应不明显,土壤氮素净矿化量均随土壤供氮量的增加而显著减少,在一般供氮量范围内(0~300kgN·hm^-2)均表现为净矿化,一级动力学模型只能预测作物整个生育期土壤氮素矿化总的趋势,并不能反映某一阶段矿化量的变化,但模型能在种植作物以前估计出土壤氮素净矿化量,从这个意义上说,模型的预测作用仍是不可低估的。  相似文献   

13.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. CV. Bien venu in flowing solution culture.II. Uptake from solutions containing NH4NO3.—J. exp. Bot.38: 53–66 The effects of root temperature on uptake and assimilation ofNH4+ and NO3 by oilseed rape (Brassica napus L. CV. Bienvenu) were examined. Plants were grown for 49 d in flowing nutrientsolution at pH 6?0 with root temperature decrementally reducedfrom 20?C to 5?C; and then exposed to different root temperatures(3, 5, 7, 9, 11, 13, 17 or 25?C) held constant for 14 d. Theair temperature was 20/15?C day/night and nitrogen was suppliedautomatically to maintain 10 mmol m–3 NH4NO3 in solution.Total uptake of nitrogen over 14 d increased threefold between3–13?C but was constant above 13?C. Net uptake of NH4+exceeded that of NO3 at all temperatures except 17?C,and represented 47–65% of the total uptake of nitrogen.Unit absorption rates of NH4+ and of 1?5–2?7 for NO3suggested that NO3 absorption was more sensitive thanNH4+ absorption to temperature. Rates of absorption were relativelystable at 3?C and 5?C compared with those at 17?C and 25?C whichincreased sharply after 10 d. Tissue concentration of N in theshoot, expressed on a fresh weight basis, was independent ofroot temperature throughout, but doubled between 3–25?Cwhen expressed on a dry weight basis. The apparent proportionof net uptake of NO3 that was assimilated was inverselyrelated to root temperature. The results are used to examinethe relation between unit absorption rate adn shoot:root ratioin the context of short and long term responses to change ofroot temperature Key words: Brassica napus, oilseed rape, root temperature, nitrogen uptake  相似文献   

14.
The effects of withdrawing nitrogen (N) from the nutrient solutionof adult tomato plants growing in rockwool in a greenhouse wereinvestigated over a 6 week period during fruit production. Thetreatment reduced total plant growth after a lag period of about2 weeks. The commercial fruit yield after 6 weeks of N deprivationwas 7.7 kg m-2compared to 9.3 kg m-2in control plants. Duringthe experiment, growth of the -N plants was fuelled by N reservescontained in both the substrate (rockwool) and in plant organs.The nitrogen budget calculated for -N plants showed that onlya small amount of organic-N was readily available for internalcycling from organs such as stems. It served mainly to feedgrowing fruits which were the main sinks in the plant. The studyalso established that stores of nitrate-N were fully depletedbut it took 45 d for the -N plants to metabolize completelytheir nitrate reserves. This indicates that internal nitrateis not a readily-accessible store of labile N. An estimationof the critical N concentration (%Nc) in the aerial dry matterwas made from the data. Thus, for a crop yielding about 9.9tons DM ha-1, %Ncwas close to 2.5%. This result is discussedin light of existing models that describe the ontogenic declinein %Ncin dry biomass of C3plants. The study indicates that thecurrent regime of N fertilization practised in soilless culturesnot only leads to ineffective nitrogen use but also to largelosses of N to the environment; N concentrations should be decreasedin feeding recipes. The use of N-free nutrient solutions priorto the termination of plant culture may also be a means of limitingthe loss of eutrophying elements, such as nitrate, to the environment.Copyright 2001 Annals of Botany Company Lycopersicon esculentum, tomato, organ dry biomass, critical nitrogen concentration, compartment, rockwool, nitrate interruption, distribution, reserves  相似文献   

15.
Lawlor, D. W., Boyle, F. A., Young, A. T., Keys, A. J. and Kendall,A. C. 1987. Nitrate nutrition and temperature effects on wheat:photosynthesis and photorespiration of leaves.—J. exp.Bot. 38: 393–408. Photosynthetic and photorespiratory carbon dioxide exchangeby the third leaf of spring wheat (Triticum aestivum cv. Kolibri),was analysed for plants grown at 13/10 °C (day/night temperature)and 23/18 °C with two rates of nitrate fertilization (abasal rate, — N, and a 4-fold larger rate, +N) and, insome experiments, with two photon fluxes. Net photosynthesiswas greatest at the time of maximum lamina expansion, and forleaves grown with additional nitrate. Maximum rate of photosynthesis,carboxylation efficiency and photochemical efficiency at maturitywere slightly decreased by nitrate deficiency but photosystemactivity was similar under all conditions. As leaves aged, photosynthesisand photochemical efficiency decreased; carboxylation efficiencydecreased more than photochemical efficiency particularly withbasal nitrate. Low oxygen increased the carboxylation and photochemicalefficiencies, and increased the maximum rate of assimilationby a constant proportion in all treatments. Photorespiration,measured by CO2 efflux to CO2-free air, by 14CO2 uptake, andfrom compensation concentration, was proportional to assimilationin all treatments. It was greater, and formed a larger proportionof net photosynthesis, when measured in warm than in cold conditionsbut was independent of growth conditions. Assimilation was relatedto RuBPc-o activity in the tissue. Relationships between photosynthesis,photorespiration and enzyme complement are discussed. Key words: Wheat, leaves, nitrate nutrition, temperature effect, photosynthesis, photorespiration  相似文献   

16.

Background and Aims

In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales.

Methods

A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint.

Key Results and Conclusions

Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake.  相似文献   

17.
Macdonald  A.J.  Poulton  P.R.  Stockdale  E.A.  Powlson  D.S.  Jenkinson  D.S. 《Plant and Soil》2002,246(1):123-137
An earlier paper (Macdonald et al., 1997; J. Agric. Sci. (Cambridge) 129, 125) presented data from a series of field experiments in which 15N-labelled fertilizers were applied in spring to winter wheat, winter oilseed rape, potatoes, sugar beet and spring beans grown on four different soils in SE England. Part of this N was retained in the soil and some remained in crop residues on the soil surface when the crop was harvested. In all cases the majority of this labelled N remained in organic form. In the present paper we describe experiments designed to follow the fate of this `residual' 15N over the next 2 years (termed the first and second residual years) and measure its value to subsequent cereal crops. Averaging over all of the initial crops and soils, 6.3% of this `residual' 15N was taken up during the first residual year when the following crop was winter wheat and significantly less (5.5%) if it was spring barley. In the second year after the original application, a further 2.1% was recovered, this time by winter barley. Labelled N remaining after potatoes and sugar beet was more available to the first residual crop than that remaining after oilseed rape or winter wheat. By the second residual year, this difference had almost disappeared. The availability to subsequent crops of the labelled N remaining in or on the soil at harvest of the application year decreased in the order: silty clay loam>sandy loam>chalky loam>heavy clay. In most cases, only a small proportion of the residual fertilizer N available for plant uptake was recovered by the subsequent crop, indicating poor synchrony between the mineralization of 15N-labelled organic residues and crop N uptake. Averaging over all soils and crops, 22% of the labelled N applied as fertilizer was lost (i.e., unaccounted for in harvested crop and soil to a depth of 100 cm) by harvest in the year of application, rising to 34% at harvest of the first residual year and to 35% in the second residual year. In the first residual year, losses of labelled N were much greater after spring beans than after any of the other crops.  相似文献   

18.
李云  刘炜  王朝辉  高亚军 《生态学报》2014,34(13):3788-3796
在黄土高原南部娄土上,通过2a田间试验研究了小麦和苜蓿对土壤中不同累积量的残留硝态氮的利用差异。研究包括0—3 m土壤残留硝态氮累积量(设N1、N2、N3、N4、N5和N6共6个水平,残留硝态氮量依次增加)和作物种类(冬小麦和苜蓿)2个因素,分别采用冬小麦-夏休闲-冬小麦和苜蓿连作种植方式。结果表明,不施用氮肥条件下,冬小麦-休闲-冬小麦轮作周期与苜蓿连作2a内,土壤残留硝态氮的消长有明显差异。在第1季小麦生长期间,小麦的氮素携出量(63.9—130.3 kg/hm2)、氮素携出量占播前残留硝态氮量的比例(18%—27%)及氮素携出量占该生长季硝态氮减少量的比例(29%—62%)均显著高于同期的苜蓿处理。在第2个生长季内,苜蓿的氮素携出量是小麦当季氮素携出量的近6倍,但由于苜蓿固氮作用强烈,至第2生长季结束后,0—3 m土壤硝态氮量与苜蓿播前相比平均只减少了72.4 kg/hm2,而麦田0—3 m土壤硝态氮量与小麦播前相比减少了158.3 kg/hm2。在短期内如果通过种植作物消耗土壤剖面的残留硝态氮,冬小麦比苜蓿更有优势。第1季小麦氮素携出量与小麦播前0—2 m(r=0.920**)和0—3 m(r=0.857*)土层残留硝态氮量呈显著或极显著正相关,与0—1 m土层残留硝态氮量没有显著相关性;第1生长季苜蓿氮素携出量与播前0—1 m土壤硝态氮累积量呈显著正相关关系(r=0.846*),而与0—2 m和0—3 m土壤硝态氮累积量的相关性并不显著。小麦比苜蓿能利用更深土层中的硝态氮。随着播前0—3 m土壤残留硝态氮的增加,小麦和苜蓿地上部氮素携出量呈增加的趋势,硝态氮表观损失也显著增加。  相似文献   

19.
Nitrate Accumulation and its Relation to Leaf Elongation in Spinach Leaves   总被引:6,自引:0,他引:6  
The leaf elongation rate (LER) of spinach leaves during theday was twice that during the night when grown at a photon fluxdensity of 145 µmol m–2 s–1. All leaves showedthe same LER-pattern over 24 h. Due to low turgor, LER was lowin the afternoon and in the first hours of the night until wateruptake restored full turgor. Osmotic potential remained constantdue to increased nitrate uptake and starch degradation in thisperiod. LER increased to high rates in the second part of thenight and in the morning. The lower rate in the dark comparedto the light was not caused by the lower night temperatures,as increased photon flux density during growth resulted in equalrates in the light and the dark. Increased relative humiditydecreased LER and afternoon rates were most sensitive to waterstress. A ‘low light’ night period did not changeLER-pattern during the night or on the following day. We concludethat nitrate is not an obligatory osmoticum during the nightand can be exchanged for organic osmotica without decreasingLER. During the night the turgor is first restored by increasingwater uptake, nitrate uptake and starch degradation. This resultedin increased leaf fresh weight in this period. Thereafter, elongationincreased by simultaneous uptake of nitrate and water. Nitrateconcentration was, therefore, constant in the older leaves.In the younger leaves nitrate concentration increased to replacesoluble carbohydrates. The vacuoles of the old leaves were filledwith nitrate before those of the young leaves. Key words: Spinacia oleracea L., nitrate accumulation, osmotic potential, organic acids  相似文献   

20.
Shoot growth, root growth and macro-nutrient uptake by a high-yielding (5t/ha grain) winter oilseed rape crop have been measured. Maximum rooting density in the top 20cm of soil was 9.4 cm cm−3 and roots reached a depth of at least 1.8 m. Maximum nutrient uptakes were 364 kg ha−1 for N, 43 kg ha−1 for P, 308 kg ha−1 for K, 287 kg ha−1 for Ca and 16 kg ha−1 for Mg. A 30-day drought coincided with the flowering period and root and shoot growth, as well as nutrient uptake rates, were reduced. Nutrient concentrations in the soil solution necessary to sustain the nutrient fluxes into the root system by diffusive supply have been calculated. Peak values were in the range 10 μM for P to 87 μM for N, lower than the observed concentrations, and it was concluded that nutrient transport to roots was not a limitation to uptake by this rape crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号