首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
半干旱沙地封育草场的植被变化及其与土壤因子间的关系   总被引:17,自引:3,他引:14  
杨晓晖  张克斌  侯瑞萍  慈龙骏 《生态学报》2005,25(12):3212-3219
封育措施是一种主要的草场恢复和重建的措施。通过对半干旱沙地完全封育、季节封育和未封育地的比较分析,量化了不同封育措施下植被变化及其与土壤因子的关系。对3种封育措施群落组成和生物多样性的多响应置换过程(M RPP)分析结果表明,封育改变了群落的组成成分并增加了生物多样性,群落的指示种分析及样方相似性指数计算结果则显示,完全封育(>10a)的群落逐渐向旱生化发展,各植物种分布的空间异质性显著提高,放牧价值开始降低,而季节性封育则明显处于一种非平衡的稳定状态。对不同措施下植物种与土壤因子间关系除趋势对应分析(DCA)和除趋势典范对应分析(DCCA)排序结果表明,土壤水分状况是限制3种措施中植物种组成的决定性因子,生物结皮盖度、土壤有机质和土壤容重等因子均在一定的程度上对水分产生影响,其中最为突出的因子是生物结皮盖度,由于长期缺少牲畜的践踏,完全封育区内结皮发育较好,这也是导致群落向旱生化发展的原因之一,同时一些重要因子诸如降水的时空变化或由此而引发的土壤水分的时空变化在本研究中可能被忽略。相关分析表明3种措施的生物多样性除了受土壤水分状况(土壤含水量和结皮盖度)的影响外,还与土壤速效氮呈正相关,与速效磷呈负相关。  相似文献   

2.
Exclusion has been applied as a main measure for re-vegetation all over the world. This paper, by comparing the results of year-round exclusion, seasonal exclusion, and non-exclusion, quantified the vegetation variations under three different exclusion measures and their correlation to soil factors. The analysis results for community species component and plant diversity using multi-response permutation procedures (MRPPs) showed that exclusion did change the species component and increase plant diversity remarkably, while the period of exclusion had no significant influence on these two community features. The indicator species analysis and calculation of similarity indices indicated that community for year-round exclusion were becoming xerophytization and unpalatability, and showed highly spatial heterogeneity of plant species distribution, whereas community for seasonal exclusion was under stable non-equilibrium condition. Detrended correspondence analysis (DCA) and detrend canonical correspondence analysis (DCCA) results of relationship between plant species and soil variables demonstrated that soil moisture was a controlling factor for plant species component, microbiotic soil crust cover, soil organic matter, and soil bulk density had significant effects on soil moisture, among which microbiotic soil crust was a leading factor owing to its limitation to rainfall infiltration on the one hand, and its constraints to entrance of herbaceous seeds into soil or to germination of soil seeds on the other hand. As a result of long-term removal of animal grazing, crust kept intact in year-round exclusion community, which was a main reason of community xerophytization. It was also obvious from ordination results that some important environmental factors, such as tempo-spatial change of rainfall and corresponding tempo-spatial change of soil moisture, were neglected during direct gradient analysis. In addition, biodiversity was close related to soil nutrients as well as to soil moisture condition (soil water content and crust cover), and it had positive relation to available N, and negative relation to available P. Higher soil N had advantage to non-leguminous plants growth on nutrition-poor sand land definitely. The impact of P to community component was unclear and should be studied from plant physiology. Further researches on non-equilibrium theory in semi-arid rangeland will provide a scientific and flexible animal development paradigm for being implementing livestock fen-raising and grazing-forbidden policies in China. __________ Translated from Acta Ecologica Sinica, 2005, 25(12): 3212–3219 [译自: 生态学报]  相似文献   

3.
封育是退化沙地植被恢复与生态重建的重要措施, 理解长期处于封育状态下不同类型沙地植物群落特征变化及其影响因素有利于沙地植被恢复和生态重建。该文基于对科尔沁沙地长期封育的流动沙丘(2005年封育)、固定沙丘(1985年封育)和沙质草地(1997年封育)连续多年(2005-2017年)的植物群落调查, 结合土壤种子库、土壤养分以及气象数据, 分析了植物群落特征变化及其对环境变化的响应。研究结果表明流动沙丘植被盖度显著增加, 群落生物量和物种多样性年际间波动变化, 但无明显趋势; 固定沙丘植物群落存在逆行演替趋势, 具体表现为群落生物量、灌木和半灌木以及豆科优势度显著下降, 而一年生和多年生杂类草优势度显著增加; 沙质草地群落物种丰富度和多年生禾草优势度存在降低趋势, 并且一年生杂类草优势度明显高于其他功能群, 群落存在退化现象。3类沙地土壤种子密度变化不显著, 而种子丰富度在流动沙丘显著增加, 在固定沙丘和沙质草地有下降趋势, 土壤养分仅有有效氮和有效磷含量增加。回归分析结果表明气温和降水是影响年内生物量积累的主要因素, 但对年际间群落生物量和物种丰富度变化影响不大。除趋势对应分析结果显示土壤种子库与植物群落之间存在很高的相似性, 典型相关分析结果表明沙质草地植物群落与土壤养分紧密相关, 而固定沙丘群落主要与土壤水分紧密相关。综合以上结果可知, 封育33年的固定沙丘群落和封育21年的沙质草地群落都存在退化现象, 而封育11年的流动沙丘群落正在缓慢恢复, 因此封育年限的设定对退化沙地植被恢复至关重要, 封育时间过长不仅不利于植物群落恢复, 反而会使群落发生逆行演替, 建议封育年限的设定应综合考虑植被退化程度、土壤养分状况、土壤种子库基础以及气候条件等因素的影响。  相似文献   

4.
干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究   总被引:71,自引:0,他引:71  
在腾格里沙漠东南缘人工固沙植被区,采用已有的数据和长期的定位观测,分析了固沙植被区生物结皮的形成特点及其对植被动态的影响。流沙经过沙障固定和种植植物后,沙土表层形成风积物结皮,再演化成以藻类为优势种的微生物结皮,而这一过程是因沙物质得到固定后,大气降尘和粉粒在沙表层堆积、下沉、再经雨滴的冲击等物理作用和土壤微生物的活动共同作用的结果。在降水不足200mm的条件下,结皮的形成改变了土壤水分的传有限,  相似文献   

5.
神农架国家公园林线过渡带土壤真菌多样性   总被引:1,自引:0,他引:1  
盛玉钰  丛静  卢慧  杨开华  杨林森  王敏  张于光 《生态学报》2018,38(15):5322-5330
林线过渡带是陆地生态系统对气候变化响应的敏感区域,研究林线过渡带土壤真菌的群落结构和形成机制,对于预测气候变化对土壤养分循环和维持陆地生态系统功能的影响具有重要意义。利用Illumina高通量测序技术分析了神农架国家公园林线上下的灌木林和针叶林的土壤真菌群落结构和多样性。结果表明,在真菌物种组成上,两种植被类型的土壤优势菌门、属和种类不同,针叶林和灌木林的优势菌门分别是担子菌门(Basidiomycota)和接合菌门(Zygomycota)。除趋势对应分析(DCA)和不相似性检验(Dissimilarity test)表明两种林型的土壤真菌群落结构组成存在显著差异,且针叶林土壤真菌Shannon指数、Chao值和Richness指数均显著(P0.05)高于灌木林。典范对应分析(CCA)和Mantel检验显示土壤真菌群落结构与土壤p H、植物多样性、土壤温度和土壤湿度存在显著相关性。因此,林线过渡带上下的土壤真菌群落结构和多样性存在显著差异,土壤p H、植物多样性、土壤湿度和土壤温度可能是影响土壤真菌群落结构的重要因素。  相似文献   

6.
干旱半干旱地区人工固沙灌木林生态系统演变特征   总被引:12,自引:3,他引:9  
应用实验生态学方法分析了沙坡头地区栽植于1956、1964、1981、1987年的无灌溉人工植被固沙群落浅层土壤分形特征、植被盖度、物种特征、生物量、土壤水分、土壤微生物,以及群落土壤物理和土壤养分特征,并与流动沙丘进行比较。结果表明,在干旱半干旱的草原化荒漠地区,首先利用半隐蔽式草方格沙障对流动沙丘进行固定,然后栽植灌木柠条、花棒等和半灌木油蒿,经过40多年的稳定演变,该区域逐渐形成由矮灌木与草本植物覆盖,以及隐花植物与微生物土壤结皮复合的固定沙丘景观。在人工植被固沙防护体系稳定演变过程中,浅表层土壤的细粒化和养分富集化特征,微生物土壤结皮与亚表层土壤厚度,以及浅表层土壤体积含水率均随固沙年限的延长趋于显著增加。而土壤微生物数量、植被盖度、植物种数等生物群落学属性在固沙年限达40a左右时,已趋于最大,尔后呈缓慢下降趋势。随着固沙年限的增加,灌木树种不断衰退减少,当固沙年限逾17a之后,群落生物量增至峰值后略有下降。土壤分形维数与土壤粘粒含量呈显著正相关关系,流动沙丘被人工植被固定年代越久远,浅表层(0~3cm)土壤粘粒含量(4.50%)越高,其分形维数越大(D=2.4083),表明人工植被固沙防护体系浅表层土壤结构变得越紧实,流动沙丘(D=2.0484)在人工植被的固定作用下,发生逆转的趋势越显著,沙丘日趋固定。  相似文献   

7.
We compared the foliar 15N and 13C values of Pinus massoniana growing on soils with and without microbiotic crust to examine the influence of the microbiotic crust on N and water use in plants in deteriorated watersheds in southern China. At our study site, litterfall and undergrowth had been intensively removed for fuel and soil N concentration was extremely low. Microbiotic crust covered the lower slope within the watersheds and pine trees were taller here than on the middle and upper slopes, although the crust reduced the amount of rainfall that could penetrate the soil. The foliar 15N values were greater (closer to zero) in pine trees growing on soil covered with microbiotic crust on the lower slope than on the middle and upper slopes, which lacked the microbiotic crust. These data suggest that P.massoniana may depend on N fixed by the microbiotic crust on the lower slope, and on N carried by precipitation on the middle and upper slopes. The microbiotic crust did not influence foliar 13C, an index for water use efficiency, in P.massoniana. The fact that P.massoniana biomass was greater on the lower slope, which is less permeable to rainfall, suggests that P.massoniana growth may be limited by the amount of available N rather than by water. The microbiotic crust may improve plant productivity by increasing N availability, despite its negative effect on water availability.  相似文献   

8.
胡相明  程积民  万惠娥  赵艳云 《生态学报》2006,26(10):3276-3285
在黄土丘陵区,地形因素和土壤水分是决定草地景观格局的主要因素,同时草地景观格局在不同尺度上影响着景观中的流.地形因素、土壤水分和草地结构在不同尺度上有着密切的联系,研究它们之间的关系对于了解生态系统的过程十分重要.针对黄土高原异质化的草地群落结构,选取黄土丘陵区经过20多年自然封育形成的天然草地,从坡面尺度对景观格局进行了调查研究,在地形因素、土壤水分和草地结构中选取了有代表性的指标14个,用多元统计分析对选取的指标进行了主成分分析和聚类分析.聚类分析将样方分成3种植被类型,不同植被类型的海拔、坡度、20~140cm土壤含水量以及物种丰富度和生物多样性存在显著性差异.相关分析表明:海拔对0~300cm土壤含水量影响显著;海拔对草地群落盖度,坡位、坡向对草地群落的物种丰富度和生物多样性有着重要影响;而草地群落的物种丰富度和生物多样性与0~100cm土层的含水量关系密切.  相似文献   

9.
Effect of microbiotic soil surface crusts on emergence of vascular plants   总被引:12,自引:0,他引:12  
Prasse  Rüdiger  Bornkamm  Reinhard 《Plant Ecology》2000,150(1-2):65-75
Microbiotic crusts are a common and widespread feature of arid and semi-arid landscapes. Their effect on vascular plant success has been discussed controversially. However, only very few field studies have yet tried to experimentally investigate the effect of microbiotic crusts on vascular plant establishment.In this study we investigate the influence of cyanobacteria dominated microbiotic soil surface crust on vascular plants in a desert sand dune area by using a series of manipulative experiments. Crusts were disturbed and removed and density response to these treatments was monitored during the two following years.Emergence densities of vascular plants were considerably higher when crusts were removed and destroyed. This effect was particularly pronounced when the disturbances were applied before the main seed dispersal period. By experimentally preventing seed dispersal into disturbed areas we could show that undisturbed crusts reduce the probability for seeds to come to rest. This indicates that soil surface roughness is a major determinant for the establishment of vascular plants in the study area. We conclude that small-scale and well-timed disturbances of microbiotic crusts in arid lands may increase vascular plant establishment probabilities. A potential feedback process of long-term vegetation dynamics is suggested: disturbance of microbiotic crusts results in higher numbers of emerging plants, which in turn represent a rough seed-trapping element leading to a further increase in densities in consecutive years.  相似文献   

10.
生物土壤结皮——荒漠化地区研究的热点问题   总被引:67,自引:8,他引:59  
生物土壤结皮在荒漠化地区广为分布。从结皮的概念、结皮对生态系统和景观变化的影响(包括水文循环、土壤侵蚀、土壤养分循环、维管植物的萌发和生长、动物多样性、景观异质性以及生态系统和景观变化监测和评价等)以及生物土壤结皮对干扰的反应及其恢复机理等方面详细地论述了生物结皮在荒漠化发生发展及其防治中所起的重要作用,并提出了今后生物土壤结皮研究的方向和着眼点。  相似文献   

11.
Question: How do pre‐fire conditions (community composition and environmental characteristics) and climate‐driven disturbance characteristics (fire severity) affect post‐fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14 black spruce stands before and after multiple, naturally occurring wildfires. We used a combination of vegetation table sorting, univariate (ANOVA, paired t‐tests), and multivariate (detrended correspondence analysis) statistics to determine the impact of fire severity and site moisture on community composition, dominant species and growth forms. Results: Severe wildfires caused a 50% reduction in number of plant species in our study sites. The largest species loss, and therefore the greatest change in species composition, occurred in severely burned sites. This was due mostly to loss of non‐vascular species (mosses and lichens) and evergreen shrubs. New species recruited most abundantly to severely burned sites, contributing to high species turnover on these sites. As well as the strong effect of fire severity, pre‐fire and post‐fire mineral soil pH had an effect on post‐fire vegetation patterns, suggesting a legacy effect of site acidity. In contrast, pre‐fire site moisture, which was a strong determinant of pre‐fire community composition, showed no relationship with post‐fire community composition. Site moisture was altered by fire, due to changes in permafrost, and therefore post‐fire site moisture overrode pre‐fire site moisture as a strong correlate. Conclusions: In the rapidly warming climate of interior Alaska, changes in fire severity had more effect on post‐fire community composition than did environmental factors (moisture and pH) that govern landscape patterns of unburned vegetation. This suggests that climate change effects on future community composition of black spruce forests may be mediated more strongly by fire severity than by current landscape patterns. Hence, models that represent the effects of climate change on boreal forests could improve their accuracy by including dynamic responses to fire disturbance.  相似文献   

12.
We present an analysis of local species richness in neotropical forests, based on a number of 0.1 ha samples of woody plants collected by the late Alwyn Gentry. For each of 69 forests, soils were analysed and climatic data were collated. Using transformed independent variables and interaction terms, multiple regression equations were developed that explained the greatest possible amount of variation in species richness, and the best equations were selected on the basis of regression diagnostics. The best models are presented for (a) all neotropical forests, (b) forests west of the Andes (transandean) and (c) east of the Andes (cisandean), and for various subsets based on elevation and annual rainfall. For the whole dataset, and for most subsets, annual rainfall and rainfall seasonality were the most important variables for explaining species richness. Soil variables were correlated with precipitation — drier forests have more nutrient-rich soils. After the inclusion of rainfall variables, available soil nutrient concentrations contributed little to explaining or accounting for additional variation in species numbers, indicating that tropical forest species richness is surprisingly independent of soil quality. The results are consistent with the hypothesis that plants in mature tropical forests may obtain nutrients through the process of direct cycling, in which mineral nutrients are extracted from litterfall before they enter the soil. The strong relationship between community species richness and rainfall patterns has implications for biodiversity conservation. Wet forests with an ample year-round moisture supply harbour the greatest number of woody plant species and should be a focus of conservation efforts.Died 3 August 1993.  相似文献   

13.
High altitude wetlands on the Tibetan Plateau have been shrinking due to anthropogenic disturbances and global climate change. However, the few studies that have been conducted on wetlands are inconclusive about the effect of soil moisture on seed banks and potential of seed banks in wetlands with different levels of soil moisture for regeneration of dried wetlands. We investigated seed banks and plant communities along a soil moisture gradient. A structural equation model was used to analyze the direct and indirect effects of soil moisture on seed banks, as well as the relationship between plant communities and seed banks. Although soil moisture had no direct effects on seed bank richness and density and indirect effects on seed banks through plant community, it had indirect effects on the seed bank through soil pH. Soil moisture also did not have direct effects on plant community richness, but it had indirect effects through soil pH. Plant community composition changed with soil moisture, but aboveground plant abundance and seed banks composition did not change. Low similarity exists between plant community and seed banks for all wetlands, and similarity decreased along the moisture gradient. The key factor determining plant community diversity was soil pH, while seed bank diversity was mainly affected by soil pH and plant community diversity with wetland drying. Although potential for regenerating the plant community from the seed bank decreased with an increase in soil moisture, drained wetlands still have enough residual seeds for successful restoration of species-rich alpine meadows.  相似文献   

14.
Abstract. We studied the distribution of litter in a shrubland of the Negev with a semi‐arid Mediterranean climate of less than 200 mm of rainfall per year. Our focus was on the effects of litter on properties of landscape patches relevant to ecosystem processes (water runoff and soil erosion), annual plant community responses (seedling density, biomass production and species richness), and animal activity (soil disturbance by termites). Three 60‐m transects, extending across a pair of opposing north‐ and south‐facing slopes and their drainage channel, showed that litter accumulates not only under shrubs, but to a lesser extent also on the crusted inter‐shrub open areas. We used 35 experimental units (‘cells’, 0.5m × 1 m), each containing a crust and a shrub patch. Because runoff flows from crusted patches and is intercepted by shrub patches, the latter were in the lower third of the cells. Leaf litter was added in single and double amounts providing ca. 0.5 and 1.0 cm litter depth, to either, both, or none of the patches. Litter addition significantly decreased the amount of runoff, regardless of the location and amount of litter applied. Litter on the crust increased species number and seedling density of species with low abundance. Adding a double litter layer increased annual plant biomass production, while a single amount had no effect. Litter addition to the shrub patch affected neither biomass nor species richness. Litter addition to both patches at both quantities caused a large increase in termite activity. Termites caused disturbance by disrupting the crust, which may contribute to the reduction in runoff amounts. In the open, flat crust patches, annual plant communities are limited in their productivity and species richness, as there are few structures stopping the outflow of water, soil and seeds. Litter adds such structures, but affects the plant communities only when added to litter‐free crust. Litter accumulation and its patchy distribution have large impacts on landscape patch properties affecting resource distribution, plant productivity and diversity, and animal activity. Therefore, understanding litter distribution in relation to the patchy structure of the landscape of semi‐arid shrubland should be viewed as an important component of shrubland management.  相似文献   

15.
In experiments over 3 years, separate field plots were cultivated once only at 2-wk intervals. Cultivation resulted in a flush of weed seedlings, representing usually less than 6% of the apparently viable seeds in the top 10 cm of soil and with a species composition which varied with the time of year. Subsequent flushes coincided in timing and extent with those on soil which had been undisturbed and were related to significant rainfall events. In each year there were periods when lack of soil moisture restricted emergence. At these times, seeds were released from dormancy by cultivation but germination of some or all of them was delayed. There was a general correspondence in the emergence patterns of weeds and of carrot and onion sown after each cultivation. On occasions when the seedbed was drying out, establishment of the comparatively rapidly-germinating radish and cabbage was greater than that of carrot, onion or weeds. Effective initiation of germination of both crops and weeds was traceable to rainfall events. Emergence was reduced or delayed on more than half of the 45 cultivation occasions during the three growing seasons, and the results emphasise the importance of soil moisture in determining the extent and timing of seedling emergence.  相似文献   

16.
Recent comparisons of plant species densities in tropical forest make it possible to evaluate factors that govern species richness. Contrary to earlier predictions, plant species densities are not greater on soils of relatively low fertility. In fact, the opposite trend is often observed, although the relationship between species densities and soil fertility is highly variable. However, tropical forest plant species densities consistently increase with rainfall. Species coexistence in wetter tropical forests may be facilitated by the absence of competition for moisture combined with year-round pest pressure and low understory light levels, which reduce growth rates and the potential for competition for other resources.  相似文献   

17.
汶川地震滑坡迹地植物群落与环境的关系   总被引:1,自引:0,他引:1  
孙丽文  史常青  李丹雄  赵廷宁 《生态学报》2016,36(21):6794-6803
为了加快汶川地震滑坡迹地人工恢复植被的进程,探讨地震诱发的滑坡迹地植物群落与环境的关系。在5·12地震重灾区北川境内选取29个样地进行植被调查,采用10个环境指标刻画植物群落的地形、空间位置和土壤养分特征;利用TWINSPAN、CCA、DCA和DCCA,分析植物种、植物群落和植物生活型与环境的关系。结果显示:1)研究区的植物群落可划分为9个类型。2)研究区环境变量对植物种的解释量为21.96%,第一排序轴与pH值、海拔、土壤质地相关,反映的是植物种从次生植物群落向原生植物群落变化。通过DCCA分析得出,环境变量对植物群落的排序解释了25.7%,第一排序轴与pH值、海拔、土壤质地的相关较强,反映植物群落按照耐旱、耐贫瘠→人工或先锋植物→未受损的植被变化;第二排序轴与土壤有机质、全氮含量、坡向的相关,反映的是植物群落从草本植物→乔灌草或者灌草植物变化。3)滑坡迹地的植物群落与未受损林地的植物群落物种存在较大差异。  相似文献   

18.
模拟增温对西藏高原高寒草甸土壤供氮潜力的影响   总被引:3,自引:0,他引:3  
宗宁  石培礼 《生态学报》2019,39(12):4356-4365
过去几十年青藏高原呈现显著的增温趋势,冬季增温幅度显著高于生长季的季节非对称特征。气候变暖会对生态系统氮素循环产生重要影响,但关于全年增温与冬季增温对高寒生态系统氮循环的不同影响仍缺乏研究。在青藏高原高寒草甸区开展模拟增温试验,研究季节非对称增温对高寒草甸生态系统氮循环的影响。该试验布设于2010年7月,设置3种处理(不增温、冬季增温与全年增温)。研究结果发现,开顶箱增温装置造成了小环境的暖干化:显著提高了地表空气温度和表层土壤温度,降低了表层土壤含水量。冬季增温会加剧土壤中氮素的流失,所以在经历了冬季增温后土壤氮含量显著降低;在生长季节,土壤氮素周转速率受土壤水分的调控,在降雨较少的季节,增温引起的土壤含水量降低会抑制土壤氮周转速率。对于土壤微生物量而言,高寒草甸土壤微生物量碳表现出明显的季节动态,在生长季旺盛期较低,在生长季末期和初冬季节反而较高,这说明为了降低对土壤养分的竞争,高寒草甸植物氮吸收与土壤微生物氮固持在时间上存在分离。研究结果表明,冬季增温导致的土壤养分含量变化会影响随后生长季植物群落的生产力、结构组成与碳氮循环等过程,对生态系统过程产生深远的影响。  相似文献   

19.
Climate change-induced rainfall reductions in Mediterranean forests negatively affect the decomposition of plant litter through decreased soil moisture. However, the indirect effects of reduced precipitation on litter decomposition through changes in litter quality and soil microbial communities are poorly studied. This is especially the case for fine root litter, which contributes importantly to forests plant biomass. Here we analyzed the effects of long-term (11 years) rainfall exclusion (29% reduction) on leaf and fine root litter quality, soil microbial biomass, and microbial community-level physiological profiles in a Mediterranean holm oak forest. Additionally, we reciprocally transplanted soils and litter among the control and reduced rainfall treatments in the laboratory, and analyzed litter decomposition and its responses to a simulated extreme drought event. The decreased soil microbial biomass and altered physiological profiles with reduced rainfall promoted lower fine root—but not leaf—litter decomposition. Both leaf and root litter, from the reduced rainfall treatment, decomposed faster than those from the control treatment. The impact of the extreme drought event on fine root litter decomposition was higher in soils from the control treatment compared to soils subjected to long-term rainfall exclusion. Our results suggest contrasting mechanisms driving drought indirect effects on above-(for example, changes in litter quality) and belowground (for example, shifts in soil microbial community) litter decomposition, even within a single tree species. Quantifying the contribution of these mechanisms relative to the direct soil moisture-effect is critical for an accurate integration of litter decomposition into ecosystem carbon dynamics in Mediterranean forests under climate change.  相似文献   

20.
Shifts in precipitation regimes are an inherent component of climate change, but in low‐energy systems are often assumed to be less important than changes in temperature. Because soil moisture is the hydrological variable most proximally linked to plant performance during the growing season in arctic‐alpine habitats, it may offer the most useful perspective on the influence of changes in precipitation on vegetation. Here we quantify the influence of soil moisture for multiple vegetation properties at fine spatial scales, to determine the potential importance of soil moisture under changing climatic conditions. A fine‐scale data set, comprising vascular species cover and field‐quantified ecologically relevant environmental parameters, was analysed to determine the influence of soil moisture relative to other key abiotic predictors. Soil moisture was strongly related to community composition, species richness and the occurrence patterns of individual species, having a similar or greater influence than soil temperature, pH and solar radiation. Soil moisture varied considerably over short distances, and this fine‐scale heterogeneity may contribute to offsetting the ecological impacts of changes in precipitation for species not limited to extreme soil moisture conditions. In conclusion, soil moisture is a key driver of vegetation properties, both at the species and community level, even in this low‐energy system. Soil moisture conditions represent an important mechanism through which changing climatic conditions impact vegetation, and advancing our predictive capability will therefore require a better understanding of how soil moisture mediates the effects of climate change on biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号