首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study is to test the hypothesis that it depends on plant species used in the wetlands and their stubble growth attributes, as to whether monoculture or mixed wetland is superior in plant growth and nutrient removal. Monoculture and mixed wetland microcosms of five wetland plant species were studied. Significant differences in growth and aboveground biomass were found in the monoculture wetlands. Species that showed faster growth and larger biomass in monoculture wetland were also dominant in the mixed wetland. The mixed wetland exhibited similar biomass and root growth to the averages of five monocultures. ANOVA showed that there were very significant differences among the wetlands in removal rates of all the nutrients studied except nitrate nitrogen (NO3-N) and chemical oxygen demand (COD). The removal rates from the mixed wetland were generally comparable to the highest removal rates from the monocultures. The species exhibited different stubble growth attributes, with some species showing increasing stubble growth and removal rates, while other species showing decreasing stubble growth and removal rates. The results indicated that in both monocultures and mixed constructed wetlands, growth and nutrient removal rates depended on plant species, and attributes of plant stubble growth affected overall growth and nutrient removal capabilities.  相似文献   

2.
A layer effect study was conducted to investigate the transformation of nitrogenous pollutants in two batch subsurface horizontal constructed wetlands. Artificial drainage water containing a low concentration of chemical oxygen demand (CODCr), but high concentration of ammonia and nitrate, was treated in two batch wetland cuboids. The nitrogen removal rates were found to be significantly affected by the characters of the layer as well as the biomass and roots of different plant species (P < 0.05). Correlations between pH, oxidation-reduction potential, and retention time indicated that nitrogen removal rates under study conditions mainly depended on the location of the layer and the plant species in the constructed wetland.  相似文献   

3.
模拟人工湿地中植物多样性配置对硝态氮去除的影响   总被引:1,自引:0,他引:1  
为检验植物多样性对人工湿地脱氮功能的影响,在模拟人工湿地试验系统中设置了植物单种和混种处理并定期供给氮形态仅为硝态氮的模拟污水。结果表明:混种系统的出水硝态氮浓度显著低于单种(P<0.05);混种与单种系统在基质氮含量和植物氮积累量上无统计差异;质量平衡分析表明混种促进系统反硝化强度;菩提子单种系统中的硝态氮移除能力显著高于香蒲、芦苇和菖蒲单种系统,后3种硝态氮移除能力则无显著差异。本研究可为人工湿地选择高效物种、多样性配置以提高氮去除率提供依据。  相似文献   

4.
Allometric analysis was used to examine morphological relationships in field populations of two clonal plants, Cladium jamaicense and Typha domingensis, in a Florida Everglades wetland. We found that allometric relationships of individuals sampled from field populations could be adequately derived and applied to analyzing both leaf and ramet growth responses to site differences along a nutrient gradient. Overall, the allometric relationships showed a significant departure from isometry which indicates that the relationships were size-dependent. Leaf-level morphological relationships were significantly different between species and between sites along the nutrient gradient. These differences, however, were not expressed on the ramet-level. Neither species expressed a plastic allocation response to site differences along the nutrient gradient. Biomass allocation between above- and below-ground for both species indicated significant size-dependent relationships with decreasing relative allocation below-ground with increasing size. Models for predicting total plant biomass (above- and below-ground) for both C. jamaicense and T. domingensis were developed based on two non-destructive measurements that are easily obtainable in the field. The models followed the equation log (biomass) = α + β1 × log (height) + β2 × log (basal area), where α was species specific while β1 and β2 were similar for both species but significantly different according to site along the nutrient gradient. Analysis of this model showed that plant height had a relatively greater influence on biomass than basal area at all sites. This difference was greatest at the un-enriched area where plants tend to be short and thick and the least at the moderately enriched site where the relative influence of both parameters was similar.  相似文献   

5.
The objective of this study was to test the hypothesis that fibrous-root plants and rhizomatic-root plants are characterized by different root morphologies, root growth and distribution, and contaminant removal capabilities. Four fibrous-root and four rhizomatic-root wetland plants were studied in mono-cultured microcosms which received wastewater. Fibrous-root plants had significantly greater (P < 0.05) small-size root (diameter ≤ 1 mm) biomass and a larger (P < 0.05) root surface area per plant than the rhizomatic-root plants and exhibited accelerated growth in both shoots and roots compared to the rhizomatic-root plants. Fibrous-root plants developed the majority of their root biomass increment within a shallower gravel medium than the rhizomatic-root plants. All plants demonstrated fast root biomass growth from July to September. The wetland microcosms planted with fibrous-root plants showed significantly higher (P < 0.05) ammonium-nitrogen (NH4-N) and nitrate-nitrogen (NO3-N) removal rates from July to December than those planted with the rhizomatic-root plants. These results suggest that root characteristics of wetland plants, which are related to their shoot and root growth, root distribution, and decontamination ability, can be used in the selection of wetland plants with a higher contaminant removal capacity and in the construction of a multi-species wetland plant community. Handling editor: S. M. Thomaz  相似文献   

6.
模拟人工湿地中植物多样性对铵态氮去除的影响   总被引:1,自引:0,他引:1  
为了研究植物多样性对人工湿地生态系统的氮去除功能和硝化作用的影响,在模拟人工湿地中配置了单种和4种植物混种2个处理,并以铵态氮为唯一入水氮源负荷。结果表明:混种系统出水中的无机氮浓度显著低于单种系统(分别为3.41和7.20mg·L-1,P<0.05),铵态氮浓度也显著低于单种系统(分别为1.35和4.11mg·L-1,P<0.05);而出水硝铵浓度比(NO3-∶NH4+=1.55)则高于(P<0.05)单种系统(0.80),说明多样性增强了系统的硝化作用;混种系统基质的无机氮存留量(1455mg·m-2)低于(P<0.05)单种(2235mg·m-2),说明混种系统中可能存在资源的互补利用;根据物质平衡法推算出混种系统中植物总的氮吸收量对无机氮去除的贡献率(48%)大于(P<0.05)单种(31%),植物的可移除部分(地上)对无机氮移除的贡献率也呈现此规律(混种和单种分别为33%和20%,P<0.05);基质氮存留在2种系统中的贡献率则与植物吸收规律相反(混种和单种分别为5%和9%,P<0.05);混种系统中的反硝化作用、氨挥发和微生物的氮固持等对氮去除的贡献率低于单种系统。  相似文献   

7.
The objective of this study was to investigate the relationships between root radial oxygen loss (ROL), photosynthesis, and nutrient removal, based on the hypothesis that ROL is primarily an active process which is affected positively by photosynthesis, and is correlated positively with nutrient removal. Four common wetland plants were studied in small-scale monoculture wetlands. Higher ROL coincided with faster growth among the four monocultures. Significant correlation between ROL and photosynthetic rate existed in Cyperus flabelliformis wetland (P < 0.01). Both ROL and photosynthesis represented close correlations with nutrient removal rates in all four monocultures. Significant differences in ROL, photosynthetic rate, removal rates of NH4+, and soluble reactive phosphorus (SRP) were found among the four species. ROL and photosynthetic rates showed single-peak daily and seasonal patterns, with maximum daily values around noon, and with maximum yearly values in summer or autumn for the four monocultures. The results suggest that the ROL of wetland plants is related to active physiological processes. Both ROL and photosynthetic rate are indices which can be used to identify wetland plants with a higher nutrient removal capacity.  相似文献   

8.
The aim was to investigate microbial removal from the liquid fraction of anaerobically digested pig manure in meso-scale integrated constructed wetlands (ICW’s) over a 13 month period. Four treatments were investigated: T1 (standard), T2 (effluent recycling), T3 (high nutrient loading), and T4 (high flow rate). Mean counts of yeasts and moulds and spore-forming bacteria were higher in T3 and T4 than in T1 and T2 (P < 0.05). Flow through the cells reduced mean counts of coliform, yeasts and moulds and spore-forming bacteria across all treatments (P < 0.01). Counts varied with season; coliform were highest in the Summer (P < 0.001), with yeasts and moulds highest in the Summer and Autumn (P < 0.01) and spore-formers lowest in the Autumn (P < 0.001). As Salmonella was undetectable in the influent and Escherichia coli and Enterococcus were rarely detected it is difficult to make conclusions regarding pathogen removal. Further investigations using marked strains would allow pathogen tracking within the ICW’s.  相似文献   

9.
Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates.  相似文献   

10.
Hybrid constructed wetland systems have recently been used to treat wastewaters where high demand for removal of ammonia is required. However, these systems have not been used too often for small on-site treatment systems. This is because in many countries ammonia is not limited in the discharge from small systems. Hybrid systems have a great potential to reduce both ammonia and nitrate concentrations at the same time. In our study we employed a three-stage constructed wetland system consisting of saturated vertical-flow (VF) bed (2.5 m2, planted with Phragmites australis), free-drained VF bed (1.5 m2, planted with P. australis) and horizontal-flow (HF) bed (6 m2, planted with Phalaris arundinacea) in series. All wetlands were originally filled with crushed rock (4-8 mm). However, nitrification was achieved only after the crushed rock was replaced with sand (0-4 mm) in the free-drain wetland. Also, original size of crushed rock proved to be too vulnerable to clogging and therefore, in the first wetlands the upper 40 cm was replaced by coarser fraction of crushed rock (16-32 mm) before the second year of operation started. The system was fed with mechanically pretreated municipal wastewater and the total daily flow was divided into two batches 12 h apart. The evaluation of the results from the period 2007 to 2008 indicated that such a system has a great potential for oxidation of ammonia and reduction of nitrate. The ammonia was substantially reduced in the free-drained VF bed and nitrate was effectively reduced in the final HF bed. The inflow mean NH4-N concentration of 29.9 mg/l was reduced to 6.5 mg/l with the average removal efficiency of 78.3%. At the same time the average nitrate-N concentration rose from 0.5 to only 2.7 mg/l at the outflow. Removal of BOD5 and COD amounted to 94.5% and 84.4%, respectively, with respective average outflow concentrations of 10 and 50 mg/l. Phosphorus was removed efficiently despite the fact that the system was not aimed at P removal and therefore no special media were used. Phosphorus removal amounted in 2008 to 65.4%, but the average outflow concentration of 1.8 mg/l is still high. The results of the present study indicate very efficient performance of the hybrid constructed wetlands, but optimal loading parameters still need to be adjusted. The capital cost of the experimental system is comparable to the conventional on-site treatment plant but the operations and maintenance costs are about one third of the conventional plant.  相似文献   

11.
Plant growth, biomass allocation and autofragmentation were investigated in response to root and shoot competition in the submersed macrophyte Myriophyllum spicatum L. growing in two sediment environments. Biomass accumulation and allocation were significantly affected by sediment fertility, with a higher total biomass observed in fertile sediment (average: 4.69 g per plant vs. 1.12 g per plant in infertile sediment). Root-to-shoot ratios were 0.34 and 0.06 in the infertile and fertile sediments, respectively, reflecting the high investment placed on roots under infertile conditions. In the presence of root, shoot, and full competition, whole plant biomass decreased by 18%, 12% and 24% in the infertile sediments, and 23%, 25% and 33% in the fertile sediments, respectively. Root weight ratios (RWRs) increased with root competition by 38% (P < 0.001) and 12% (P = 0.002), while leaf weight ratios (LWRs) decreased with shoot competition by 6% (P = 0.042) and 5% (P = 0.001) in the infertile and fertile sediments, respectively. A total of 406 autofragments were harvested in the fertile sediments, but none were obtained from the infertile sediments. In the control, autofragment number and biomass was 166% and 175% higher compared to the competition treatment. Root and shoot competition resulted in a 21% (P = 0.043) and 18% (P = 0.098) decrease in the autofragment biomass, respectively. These results indicated that M. spicatum responds to different sediment fertility by changing its allocation patterns. Moreover, both root and shoot competition influenced plant growth and autofragmentation, while sediment nutrient availability played an important role in M. spicatum autofragmentation.  相似文献   

12.
This study was conducted to determine the stage of maturity at which the dry matter (DM) yield and nutritive value of velvet bean (Mucuna pruriens) is optimized. Mucuna was harvested at 77, 110 and 123 days after planting (DAP) from quadruplicate 5 m × 1 m plots within each of 6 blocks. At each DAP, DM yield, chemical composition, botanical composition, in vitro rumen fluid-pepsin DM digestibility (IVDMD) and concentrations of total polyphenols, l-dopa and tannins were determined on the whole plant and botanical fractions. Whole-plant Mucuna DM yield increased (P<0.01) linearly with maturity; proportions of leaves and stems decreased linearly (P<0.01), whereas proportion of pods increased (P<0.01). Concentrations of neutral-detergent fiber (aNDF) in whole plant, leaf, and stem increased (P<0.05), or tended (P<0.10) to increase linearly with maturity, as did the acid-detergent fiber concentration of leaves and stems. Maturity decreased (P<0.05) ether extract concentrations of leaves linearly, and stems quadratically, but increased (P<0.05) whole-plant and pod starch concentrations. Pods contained relatively high concentrations of lysine, histidine, phenylalanine, aspartate, glutamate, leucine, isoleucine, and valine, but low concentrations of methionine and cystine. The essential amino acid index did not vary with maturity. Most minerals in Mucuna are concentrated in the leaves and the whole plant contains sufficient Ca, P, K, Mg, Fe, Cu, Na, Mo, Mn, and Zn for growing sheep, although their bioavailability of these minerals is unknown. Total polyphenol concentration quadratically (P<0.01) increased with maturity in the whole plant, tended to increase (P<0.10) in pods, linearly (P<0.01) decreased in stems and fluctuated in leaves. Maturity quadratically increased l-dopa concentration of the whole plant (P<0.05) and stems (P<0.01), but did not affect those of leaves and pods. Maturity quadratically increased (P<0.05) total tannin concentration in the whole plant, but decreased (P<0.10) that of pods. The l-dopa was concentrated in the seeds and pods of mature (110–123 DAP) plants, but tannins were concentrated in leaves and stems. Whole-plant IVDMD was not affected by maturity, but digestible DM yield linearly (P<0.01) increased with increasing DM yield. There was a 2-week harvest window (110–123 DAP) during which whole-plant crude protein and IVDMD remained unchanged. Nevertheless, harvesting at 123 DAP gave the best combination of biomass yield and nutritive value.  相似文献   

13.
Xu BC  Xu WZ  Huang J  Shan L  Li FM 《Plant science》2011,181(6):644-651
A better understanding of the growth and interspecific competition of native dominant species under water stress should aid in prediction of succession in plant communities. In addition, such research would guide the selection of appropriate conservation and agricultural utilization of plants in semiarid environments that have not been very well characterized. Biomass production and allocation, relative competitive ability and water use efficiency of one C4 herbaceous grass (Bothriochloa ischaemum) and one C3 leguminous subshrub (Lespedeza davurica), both important species from the semiarid Loess Plateau of China, were investigated in a pot-cultivation experiment. The experiment was conducted using a replacement series design in which B. ischaemum and L. davurica were grown with twelve plants per pot, in seven combinations of the two species (12:0, 10:2, 8:4, 6:6, 4:8, 2:10, and 0:12). Three levels of water treatments included sufficient water supply (HW), moderate water stress (MW) and severe water stress (LW). These treatments were applied after seedling establishment and remained until the end of the experiment. Biomass production and its partitioning, and transpiration water use efficiency (TWUE) were determined at the end of the experiment. Interspecific competitive indices (competitive ratio (CR), aggressiveness (A) and relative yield total (RYT)) were calculated from the dry weight for shoots, roots and total biomass. Water stress decreased biomass production of both species in monoculture and mixture. The growth of L. davurica was restrained in their mixtures for each water treatment. L. davurica had significantly (P < 0.05) greater root:shoot allocation than B. ischaemum for each water treatment and proportion within the replacement series. Aggressiveness (A) values for B. ischaemum with respect to L. davurica were negative only at the proportions of B. ischaemum to L. davurica being 8:4 and 10:2 in LW treatment. B. ischaemum had a significantly (P < 0.05) higher CR value under each water treatment, and water stress considerably reduced its relative CR while increased that of L. davurica. RYT values of the two species indicated some degree of resource complimentarity under both water sufficient and deficit conditions. The results suggest that it is advantageous for growing the two species together to maximize biomass production, and the suggested ratio was 10:2 of B. ischaemum to L. davurica because of significantly higher (P < 0.05) RYT and TWUE under low water availability condition.  相似文献   

14.
The performance and temporal variation of four hybrid, intermittent loading, pilot-scale vertical flow constructed wetlands (VFCWs) were tested for treating domestic wastewater of three different C/N ratios (2.5:1, 5:1, and 10:1, respectively). Two hybrid systems each consisted of the two identical VFCWs in-series, with up-up or down-down flow. The other two hybrid systems consisted of the first VFCWs (up or down flow) followed by a second VFCWs (down or up flow, respectively). The effects of combination mode, season, load level, and interactions on nutrient removal were studied in synthetic wastewater in the two-stage VFCW systems. With varying C/N ratios for influent water (from 2.5:1, 5:1 to 10:1) average removal efficiencies for the two-bed two-stage systems were as follows: COD 73-93%, TN 46-87%, TP 75-90%, and TOC 40-66%, respectively. All two-bed hybrid VFCWs were efficient in removing organics and total phosphorus, and reached the highest removal rates when the C/N ratios were 10 and 5, respectively. The hybrid systems for different flow direction beds had significantly higher performance (P < 0.05) during the wetlands operational period. Compared to the four types of hybrid VFCWs, the two-stage combination with different flow directions achieved significantly higher TN and TOC reductions (P < 0.05). The highest total nitrogen (P < 0.05) and total phosphorus reductions in down-up flow VFCWs were observed at C/N 5:1. However, for organic matter and total organic carbon, the highest COD and TOC removal rates occurred when C/N ratios were 5-10 for the down-up flow VFCWs. With appropriate control of combined mechanisms in series, the concentrations of carbon and nitrogen sources in the influent can achieve the optimal effects of nutrient removal.  相似文献   

15.
In Catalonia (Spain), a variety of different systems have been built to naturally treat liquid residues from small communities. Some of these wastewater treatment plants (WWTPs) include constructed wetlands with horizontal subsurface flow (HSSF) as secondary treatment. The present study described and characterized the performance of 11 WWTPs with secondary HSSF constructed wetland systems after an initial operating period of 8 years. The effluent concentrations of Biochemical Oxygen Demand (BOD5), Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorous (TP) were statistically analyzed, and removal efficiencies for all WWTPs including all stages in treatment were calculated. The accumulated probability functions of those parameters were evaluated to determine the influence of two different types of polishing units on the overall performance: (a) only lagoon systems and (b) lagoon systems with HSSF. The statistical analysis indicates good performance for BOD5 and TSS. In the first case, mean concentrations below 25 mg/L were found in 9 of the 11 plants analyzed and removal efficiencies between 78 and 96% were observed. In the second case, mean concentrations below 35 mg/L were found in 8 of the 11 plants, and removal efficiencies were between 65 and 88%. For the nutrients, the removal efficiency for TN and TP were in the range of 48-66% and 39-58%, respectively. Additionally, the analysis of the influence of the polishing units did not show a significant improvement (α > 0.05) for any parameter in the wetland systems without a subsequent polishing unit. However, in the wetland systems with a polishing unit of HSSF, a significant improvement (α < 0.05) was found for the effluent's BOD5, TN and TP concentrations but with no significant contribution in TSS management.  相似文献   

16.
  1. Previous studies of the N:P ratio in wetland plants have been carried out in northern hemisphere wetlands where atmospheric nitrogen deposition is higher. There is little research on foliar N:P ratio as a potential indicator of nutrient limitation in vegetation communities in southern hemisphere wetlands. This study aimed to redress this knowledge gap and answer the following questions: how well does the plant tissue nitrogen to phosphorus (N:P) ratio predict wetland plant community nutrient limitation, as indicated by vegetation standing stocks and below-ground biomass, in southern hemisphere fens? Secondly, what are the impacts of realistic upper levels of farm nutrient run-off on natural montane fen vegetation?
  2. Low (35 kg ha−1 year−1) and high (70 kg ha−1 year−1) levels of nitrate-N or ammonium-N with and without P (20 kg ha−1 year−1) were added to 81 vegetation plots over a period of 2.75 years. Species composition, plant nutrient status, and above-ground live vegetation standing stocks were assessed after 3 years, and below-ground biomass after 2 years.
  3. Plant tissue analysis suggested the community was N limited or N and P co-limited; we found greater standing stocks of vegetation in plots treated with 70 kg ha−1 year−1 ammonium-N, indicating N limitation. No difference between other treatments was found in above-ground standing stocks or below-ground biomass. Plant species cover increased in both high N treatments, consistent with N limitation. These changes in plant species cover were accompanied by significant decreases in species richness in both high N treatments. Native species dominated the vegetation and this was unaffected by nutrient addition (90% cover).
  4. This is one of the first studies to test and find support for the N:P ratio in southern hemisphere wetlands. Observed declines in species richness after N fertilisation in an N-limited fen suggests increased N may pose risks to austral wetlands. Responses by plant communities (changes in composition, biomass) to lower levels of nutrient addition may require longer periods of fertilisation to be apparent in slow growing ecosystems.
  相似文献   

17.
Most biodiversity experiments have been conducted in grassland ecosystems with nitrogen limitation, while little research has been conducted on relationships between plant biomass production, substrate nitrogen retention and plant diversity in wetlands with continuous nitrogen supply. We conducted a plant diversity experiment in a subsurface vertical flow constructed wetland for treating domestic wastewater in southeastern China. Plant aboveground biomass production ranged from 20 to 3121 g m?2 yr?1 across all plant communities. In general, plant biomass production was positively correlated with species richness (P = 0.001) and functional group richness (P = 0.001). Substrate nitrate concentration increased significantly with increasing plant species richness (P = 0.046), but not with functional group richness (P = 0.550). Furthermore, legumes did not affect biomass production (P = 0.255), retention of substrate nitrate (P = 0.280) and ammonium (P = 0.269). Compared to the most productive of the corresponding monocultures, transgressive overyielding of mixed plant communities did not occur in most polycultures. Because greater diversity of plant community led to higher biomass production and substrate nitrogen retention, thus we recommend that plant biodiversity should be incorporated in constructed wetlands to improve wastewater treatment efficiency.  相似文献   

18.
Constructed wetlands (CWs) are considered to be important sources of nitrous oxide (N2O). In order to investigate the effect of influent COD/N ratio on N2O emission and control excess emission from nitrogen removal, free water surface microcosm wetlands were used and fed with different influent. In addition, the transformation of nitrogen was examined for better understanding of the mechanism of N2O production under different operating COD/N ratios. It was found that N2O emission and the performance of microcosm wetlands were significantly affected by COD/N ratio of wastewater influent. Strong relationships exist between N2O production rate and nitrite (r = 0.421, p < 0.01). During denitrification process, DO concentration crucially influences N2O production rate. An optimal influent COD/N ratio was obtained by adjusting external carbon sources for most effective N2O emission control and best performance of the CWs in nitrogen removal from wastewater. It is concluded that under the operating condition of COD/N ratio = 5, total N2O emission is minimum and the microcosm wetland is most effective in wastewater nitrogen removal.  相似文献   

19.
Plants have many well-documented influences in treatment wetlands, but differences in individual species’ effects on year-round and seasonal performance are poorly understood. In this study, we evaluated plant effects on seasonal patterns of organic carbon removal (measured as COD) and sulfate concentration (used as an indicator of rootzone oxidation) in replicated, batch-loaded, greenhouse microcosms simulating subsurface treatment wetlands. Microcosms were planted with monocultures of 19 plant species or left unplanted as controls, dosed every 20 days with synthetic secondary wastewater, and operated over 20 months at temperatures from 4 to 24 °C. Study-long COD removal averaged 70% for controls and 70-97% for individual species. Most species enhanced COD removal significantly and the benefits of plants were greatest at 4-8 °C because COD removal decreased at low temperatures in controls but displayed limited seasonal variation in planted microcosms. Removal was significantly better at 24 °C than 4 °C with two species (Panicum virgatum and Leymus cinereus), significantly poorer with two species (Carex utriculata and Phalaris arundinacea), and did not differ with 15 species. Only one species showed a significant positive correlation between temperature and COD removal (Iris missouriensis, r = 0.67), while two species showed significant negative correlations (better when colder: Carex nebrascensis, r = −0.67; C. utriculata, r = −0.93). High COD removal throughout the study was strongly associated with high SO4 concentrations at low temperatures, suggesting that plant performance is related to rootzone oxidation and species’ abilities to promote aerobic over anaerobic microbial processes, particularly in winter. Results indicate that improved year-round and cold-season COD removal is common across diverse wetland plant species and novel species can be as good or better than those typically used. Better performing species were largely in the sedge and rush families (Cyperaceae and Juncaceae), while poorer performing species were largely in the grass family (Poaceae).  相似文献   

20.
Field trials were conducted to increase fertility with AI of flow-sorted, sexed bovine sperm. In the first trial, a novel competitive fertilization approach was used to compare pressures (30 psi vs 50 psi) for sorting sperm. Both X- and Y-sperm were sorted to approximately 95% purity at 30 and at 50 psi; X-50 + Y-30 (and the converse) were mixed in equal numbers for AI of heifers. Fetal sex divulged which treatment produced the pregnancy; 82% of pregnancies resulted from the 30 psi treatment (P < 0.05). Based on a similar approach, a new-pulsed laser did not damage sperm any more than the previous standard continuous wave laser. In a large field trial, sorting sperm at 40 psi increased pregnancy rates in heifers relative to 50 psi (42.3% vs 34.1%, n = 367/group, P < 0.05). Storing sperm for 20 h before sorting at 40 psi decreased pregnancy rates from 42.3% (n = 367) to 36.8% (n = 368; P < 0.05). Breeding heifers with sexed sperm 55-56 h after CIDR removal and PGF resulted in 34% (n = 32) pregnant, compared to 49% (n = 35) with fixed-time insemination 67-68 h after CIDR removal (P > 0.1). Lactating dairy cows pre-screened for normal reproductive tracts when OvSynch injections (GnRH, prostaglandin, GnRH) were initiated, had similar (P > 0.1) pregnancy rates to timed AI, with 10 × 106 sexed sperm (43.9%, n = 57), 2 × 106 sexed sperm (40.5%, n = 57) and 10 × 106 unsexed control sperm (55.6%, n = 58). A final field trial with unselected, lactating dairy cows resulted in similar pregnancy rates for 2 × 106 sexed sperm in 0.25 mL straws (25.0%, n = 708) and 0.5 mL straws (24.4%, n = 776), but lower (P < 0.05) than unsexed control sperm (37.7%, n = 713). Younger cows and those >84 days in milk had the highest pregnancy rates for both sexed and unsexed sperm. These studies improved sperm sexing procedures, and provided insight into appropriate commercial use of sexed sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号