首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choice of a substitution model is a crucial step in the maximum likelihood (ML) method of phylogenetic inference, and investigators tend to prefer complex mathematical models to simple ones. However, when complex models with many parameters are used, the extent of noise in statistical inferences increases, and thus complex models may not produce the true topology with a higher probability than simple ones. This problem was studied using computer simulation. When the number of nucleotides used was relatively large (1000 bp), the HKY+Gamma model showed smaller d(T) topological distance between the inferred and the true trees) than the JC and Kimura models. In the cases of shorter sequences (300 bp) simpler model and search algorithm such as JC model and SA+NNI search were found to be as efficient as more complicated searches and models in terms of topological distances, although the topologies obtained under HKY+Gamma model had the highest likelihood values. The performance of relatively simple search algorithm SA+NNI was found to be essentially the same as that of more extensive SA+TBR search under all models studied. Similarly to the conclusions reached by Takahashi and Nei [Mol. Biol. Evol. 17 (2000) 1251], our results indicate that simple models can be as efficient as complex models, and that use of complex models does not necessarily give more reliable trees compared with simple models.  相似文献   

2.
A rapid heuristic algorithm for finding minimum evolution trees   总被引:2,自引:0,他引:2  
The minimum sum of branch lengths (S), or the minimum evolution (ME) principle, has been shown to be a good optimization criterion in phylogenetic inference. Unfortunately, the number of topologies to be analyzed is computationally prohibitive when a large number of taxa are involved. Therefore, simplified, heuristic methods, such as the neighbor-joining (NJ) method, are usually employed instead. The NJ method analyzes only a small number of trees (compared with the size of the entire search space); so, the tree obtained may not be the ME tree (for which the S value is minimum over the entire search space). Different compromises between very restrictive and exhaustive search spaces have been proposed recently. In particular, the "stepwise algorithm" (SA) utilizes what is known in computer science as the "beam search," whereas the NJ method employs a "greedy search." SA is virtually guaranteed to find the ME trees while being much faster than exhaustive search algorithms. In this study we propose an even faster method for finding the ME tree. The new algorithm adjusts its search exhaustiveness (from greedy to complete) according to the statistical reliability of the tree node being reconstructed. It is also virtually guaranteed to find the ME tree. The performances and computational efficiencies of ME, SA, NJ, and our new method were compared in extensive simulation studies. The new algorithm was found to perform practically as well as the SA (and, therefore, ME) methods and slightly better than the NJ method. For searching for the globally optimal ME tree, the new algorithm is significantly faster than existing ones, thus making it relatively practical for obtaining all trees with an S value equal to or smaller than that of the NJ tree, even when a large number of taxa is involved.  相似文献   

3.
The relative efficiencies of different protein-coding genes of the mitochondrial genome and different tree-building methods in recovering a known vertebrate phylogeny (two whale species, cow, rat, mouse, opossum, chicken, frog, and three bony fish species) was evaluated. The tree-building methods examined were the neighbor joining (NJ), minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML), and both nucleotide sequences and deduced amino acid sequences were analyzed. Generally speaking, amino acid sequences were better than nucleotide sequences in obtaining the true tree (topology) or trees close to the true tree. However, when only first and second codon positions data were used, nucleotide sequences produced reasonably good trees. Among the 13 genes examined, Nd5 produced the true tree in all tree-building methods or algorithms for both amino acid and nucleotide sequence data. Genes Cytb and Nd4 also produced the correct tree in most tree-building algorithms when amino acid sequence data were used. By contrast, Co2, Nd1, and Nd41 showed a poor performance. In general, large genes produced better results, and when the entire set of genes was used, all tree-building methods generated the true tree. In each tree-building method, several distance measures or algorithms were used, but all these distance measures or algorithms produced essentially the same results. The ME method, in which many different topologies are examined, was no better than the NJ method, which generates a single final tree. Similarly, an ML method, in which many topologies are examined, was no better than the ML star decomposition algorithm that generates a single final tree. In ML the best substitution model chosen by using the Akaike information criterion produced no better results than simpler substitution models. These results question the utility of the currently used optimization principles in phylogenetic construction. Relatively simple methods such as the NJ and ML star decomposition algorithms seem to produce as good results as those obtained by more sophisticated methods. The efficiencies of the NJ, ME, MP, and ML methods in obtaining the correct tree were nearly the same when amino acid sequence data were used. The most important factor in constructing reliable phylogenetic trees seems to be the number of amino acids or nucleotides used.   相似文献   

4.
Katoh K  Miyata T 《FEBS letters》1999,463(1-2):129-132
Applying the tree bisection and reconnection (TBR) algorithm, we have developed a heuristic method (maximum likelihood (ML)-TBR) for inferring the ML tree based on tree topology search. For initial trees from which iterative processes start in ML-TBR, two cases were considered: one is 100 neighbor-joining (NJ) trees based on the bootstrap resampling and the other is 100 randomly generated trees. The same ML tree was obtained in both cases. All different iterative processes started from 100 independent initial trees ultimately converged on one optimum tree with the largest log-likelihood value, suggesting that a limited number of initial trees will be quite enough in ML-TBR. This also suggests that the optimum tree corresponds to the global optimum in tree topology space and thus probably coincides with the ML tree inferred by intact ML analysis. This method has been applied to the inference of phylogenetic tree of the SOX family members. The mammalian testis-determining gene SRY is believed to have evolved from SOX-3, a member of the SOX family, based on several lines of evidence, including their sequence similarity, the location of SOX-3 on the X chromosome and some aspects of their expression. This model should be supported directly from the phylogenetic tree of the SOX family, but no evidence has been provided to date. A recently published NJ tree shows implausibly remote origin of SRY, suggesting that a more sophisticated method is required for understanding this problem. The ML tree inferred by the present method showed that the SRYs of marsupial and placental mammals form a monophyletic cluster which had diverged from the mammalian SOX-3 in the early evolution of mammals.  相似文献   

5.
Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 5' end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets.  相似文献   

6.
Murphy and colleagues reported that the mammalian phylogeny was resolved by Bayesian phylogenetics. However, the DNA sequences they used had many alignment gaps and undetermined nucleotide sites. We therefore reanalyzed their data by minimizing unshared nucleotide sites and retaining as many species as possible (13 species). In constructing phylogenetic trees, we used the Bayesian, maximum likelihood (ML), maximum parsimony (MP), and neighbor-joining (NJ) methods with different substitution models. These trees were constructed by using both protein and DNA sequences. The results showed that the posterior probabilities for Bayesian trees were generally much higher than the bootstrap values for ML, MP, and NJ trees. Two different Bayesian topologies for the same set of species were sometimes supported by high posterior probabilities, implying that two different topologies can be judged to be correct by Bayesian phylogenetics. This suggests that the posterior probability in Bayesian analysis can be excessively high as an indication of statistical confidence and therefore Murphy et al.'s tree, which largely depends on Bayesian posterior probability, may not be correct.  相似文献   

7.
The maximum likelihood (ML) method of phylogenetic tree construction is not as widely used as other tree construction methods (e.g., parsimony, neighbor-joining) because of the prohibitive amount of time required to find the ML tree when the number of sequences under consideration is large. To overcome this difficulty, we propose a stochastic search strategy for estimation of the ML tree that is based on a simulated annealing algorithm. The algorithm works by moving through tree space by way of a "local rearrangement" strategy so that topologies that improve the likelihood are always accepted, whereas those that decrease the likelihood are accepted with a probability that is related to the proportionate decrease in likelihood. Besides greatly reducing the time required to estimate the ML tree, the stochastic search strategy is less likely to become trapped in local optima than are existing algorithms for ML tree estimation. We demonstrate the success of the modified simulated annealing algorithm by comparing it with two existing algorithms (Swofford's PAUP* and Felsenstein's DNAMLK) for several theoretical and real data examples.  相似文献   

8.
重建系统演化树的一种新方法--试错法   总被引:1,自引:0,他引:1  
谭远德 《动物学报》2000,46(4):448-456
重建系统演化树是进化研究的一个极为重要的方面。系统树的构建依赖于一定的方法和数据。在分子系统演化研究中,所使用的数据大多是DNA序列、氨基酸序列和分子标记。而就构树方法来说,NJ法、ML法和MP法是三种最为普遍使用的方法。本文给出了一种新的建树方法,即试错法。该方法不但具有与NJ法一样好的建树效果,而且不存在难以解释的负枝长问题。  相似文献   

9.
The relative efficiencies of the maximum-likelihood (ML), neighbor- joining (NJ), and maximum-parsimony (MP) methods in obtaining the correct topology and in estimating the branch lengths for the case of four DNA sequences were studied by computer simulation, under the assumption either that there is variation in substitution rate among different nucleotide sites or that there is no variation. For the NJ method, several different distance measures (Jukes-Cantor, Kimura two- parameter, and gamma distances) were used, whereas for the ML method three different transition/transversion ratios (R) were used. For the MP method, both the standard unweighted parsimony and the dynamically weighted parsimony methods were used. The results obtained are as follows: (1) When the R value is high, dynamically weighted parsimony is more efficient than unweighted parsimony in obtaining the correct topology. (2) However, both weighted and unweighted parsimony methods are generally less efficient than the NJ and ML methods even in the case where the MP method gives a consistent tree. (3) When all the assumptions of the ML method are satisfied, this method is slightly more efficient than the NJ method. However, when the assumptions are not satisfied, the NJ method with gamma distances is slightly better in obtaining the correct topology than is the ML method. In general, the two methods show more or less the same performance. The NJ method may give a correct topology even when the distance measures used are not unbiased estimators of nucleotide substitutions. (4) Branch length estimates of a tree with the correct topology are affected more easily than topology by violation of the assumptions of the mathematical model used, for both the ML and the NJ methods. Under certain conditions, branch lengths are seriously overestimated or underestimated. The MP method often gives serious underestimates for certain branches. (5) Distance measures that generate the correct topology, with high probability, do not necessarily give good estimates of branch lengths. (6) The likelihood-ratio test and the confidence-limit test, in Felsenstein's DNAML, for examining the statistical of branch length estimates are quite sensitive to violation of the assumptions and are generally too liberal to be used for actual data. Rzhetsky and Nei's branch length test is less sensitive to violation of the assumptions than is Felsenstein's test. (7) When the extent of sequence divergence is < or = 5% and when > or = 1,000 nucleotides are used, all three methods show essentially the same efficiency in obtaining the correct topology and in estimating branch lengths.(ABSTRACT TRUNCATED AT 400 WORDS)   相似文献   

10.
距离矩阵邻接法、最大简约法和最大似然法是重建生物系统关系的3种主要方法。普遍认为最大似然法在原理上优于前二种方法,但其计算复杂费时。由于现行计算机的能力尚达不到其要求而实用性差,特别是在处理大数据集样本(即大于25个分类单元)时,用此方法几乎不可能。新近提出的贝叶斯法(Bayesianmethod)既保留了最大似然法的基本原理,又引进了马尔科夫链的蒙特卡洛方法,并使计算时间大大缩短。本文用贝叶斯法对硬蜱属(Ixodes)19个种的线粒体16S rDNA片段进行了系统进化分析。从总体上看,分析结果与现有的基于形态学的分类体系基本吻合。但与现存的假说相反,莱姆病的主要宿主蓖籽硬蜱复合种组并非单系。通过比较贝叶斯法与其它三种方法的结果,我们认为贝叶斯法是一种系统进化分析的好方法,它既能根据分子进化的现有理论和各种模型用概率重建系统进化关系,又克服了最大似然法计算速度慢、不适用于大数据集样本的缺陷。贝叶斯法根据后验概率直观地表示系统进化关系的分析结果,不需要用自引导法进行检验。可以预料,贝叶斯法将会被广泛地应用到系统进化分析上[动物学报49(3):380—388,2003]。  相似文献   

11.
通过对类人猿亚目中部分种类的孕激素受体基因进行分析,重建类人猿亚目的 系统发育关系.扩增并测定了来源于14个属的类人猿亚目物种的孕激素受体编码区序列,并基于这一序列数据,分别采用邻接法、最大简约法和最大似然法重建了系统发育关系.除了阔鼻下目,3种方法构建的系统发生树的拓扑结构类似且各节点支持率高.重建的人猿超科和猴超科内部亲缘关系支持多数人所认可的分类系统.本研究为黑猩猩和人的姐妹群关系提供了证据,提示黑猩猩比大猩猩或其他猿猴更接近人类.阔鼻下目中蜘蛛猴科、卷尾猴科和僧面猴科三者之间的系统发育关系在本研究中未得到很好辨析.  相似文献   

12.
王江  方盛国 《兽类学报》2005,25(2):105-114
原羚属物种在羚羊亚科中的分类地位尚存在很多争议。本文测定了原羚属的黄羊和藏原羚细胞色素b基因全序列(1140bp),并与牛科其它属31个种的同源序列进行比较,对其碱基组成变异情况及核苷酸序列差异进行了分析。基于细胞色素b基因全序列,用简约法(MP)、邻接法(NJ)和似然法(ML)构建了系统进化树。结果表明:黄羊和藏原羚的序列差异为3.78%,颠换数目近乎为0,其突变远未饱和;原羚属内黄羊和藏原羚为不同种,单系发生;原羚属与赛加羚羊属、犬羚属及跳羚属等并系发生,原羚属隶属于羚羊亚科,应为独立属;羚羊亚科组成属间多为并系起源。根据序列差异值2%/百万年的细胞色素6分子钟,推测黄羊和藏原羚分歧时间大约为1~2百万年;原羚属与羚羊亚科其它属分歧时间大约在5.7~8百万年。  相似文献   

13.
Maximum likelihood (ML) for phylogenetic inference from sequence data remains a method of choice, but has computational limitations. In particular, it cannot be applied for a global search through all potential trees when the number of taxa is large, and hence a heuristic restriction in the search space is required. In this paper, we derive a quadratic approximation, QAML, to the likelihood function whose maximum is easily determined for a given tree. The derivation depends on Hadamard conjugation, and hence is limited to the simple symmetric models of Kimura and of Jukes and Cantor. Preliminary testing has demonstrated the accuracy of QAML is close to that of ML.  相似文献   

14.
Branch length estimates play a central role in maximum-likelihood (ML) and minimum-evolution (ME) methods of phylogenetic inference. For various reasons, branch length estimates are not statistically independent under ML or ME. We studied the response of correlations among branch length estimates to the degree of among-branch length heterogeneity (BLH) in the model (true) tree. The frequency and magnitude of (especially negative) correlations among branch length estimates were both shown to increase as BLH increases under simulation and analytically. For ML, we used the correct model (Jukes–Cantor). For ME, we employed ordinary least-squares (OLS) branch lengths estimated under both simple p-distances and Jukes–Cantor distances, analyzed with and without an among-site rate heterogeneity parameter. The efficiency of ME and ML was also shown to decrease in response to increased BLH. We note that the shape of the true tree will in part determine BLH and represents a critical factor in the probability of recovering the correct topology. An important finding suggests that researchers cannot expect that different branches that were in fact the same length will have the same probability of being accurately reconstructed when BLH exists in the overall tree. We conclude that methods designed to minimize the interdependencies of branch length estimates (BLEs) may (1) reduce both the variance and the covariance associated with the estimates and (2) increase the efficiency of model-based optimality criteria. We speculate on possible ways to reduce the nonindependence of BLEs under OLS and ML. Received: 9 March 1999 / Accepted: 4 May 1999  相似文献   

15.
Among the criteria to evaluate the performance of a phylogenetic method, robustness to model violation is of particular practical importance as complete a priori knowledge of evolutionary processes is typically unavailable. For studies of robustness in phylogenetic inference, a utility to add well-defined model violations to the simulated data would be helpful. We therefore introduce ImOSM, a tool to imbed intermittent evolution as model violation into an alignment. Intermittent evolution refers to extra substitutions occurring randomly on branches of a tree, thus changing alignment site patterns. This means that the extra substitutions are placed on the tree after the typical process of sequence evolution is completed. We then study the robustness of widely used phylogenetic methods: maximum likelihood (ML), maximum parsimony (MP), and a distance-based method (BIONJ) to various scenarios of model violation. Violation of rates across sites (RaS) heterogeneity and simultaneous violation of RaS and the transition/transversion ratio on two nonadjacent external branches hinder all the methods recovery of the true topology for a four-taxon tree. For an eight-taxon balanced tree, the violations cause each of the three methods to infer a different topology. Both ML and MP fail, whereas BIONJ, which calculates the distances based on the ML estimated parameters, reconstructs the true tree. Finally, we report that a test of model homogeneity and goodness of fit tests have enough power to detect such model violations. The outcome of the tests can help to actually gain confidence in the inferred trees. Therefore, we recommend using these tests in practical phylogenetic analyses.  相似文献   

16.
测定了国产豹蛱蝶亚科10属共10个代表种的Cyt 6基因和CO Ⅰ基因的部分序列.结合从GenBank中获得的3个种类CO Ⅰ基因的同源序列,以锯眼蝶亚科2个物种为外群,通过遗传分析软件对CO Ⅰ、Cyt b独立基因序列和联合基因序列以及编码的氨基酸序列进行了比较分析,同时用邻接法(NJ)、最大简约法(MP)、最大似然法(ML)和贝叶斯法(BI)重建分子系统树,分析了该亚科10个属之间的系统发生关系.结果显示:1)联合基因序列的A+T平均含量为71.90h,具A、T偏倚性,其编码的357个氨基酸中没有半胱氨酸,变异率为11.5%;2)豹蛱蝶亚族为单系群;3)青豹蛱蝶属和豹蛱蝶属间、黄襟蛱蝶属和珐蛱蝶属间具有较近的亲缘关系;4)支持将文蛱蝶属、襟蛱蝶属和珐蛱蝶属从豹蛱蝶亚科中分离出来.  相似文献   

17.
拓扑树间的通经拓扑距离   总被引:1,自引:1,他引:0  
给出了一种新的系统树间的拓扑距离,使用NJ,MP,UPGMA等3种方法对13种动物的线粒体中14个基因(含组合的)DNA序列数据进行系统树的构建,利用分割拓扑距离和本文给出的通经拓扑距离对这14种系统树这间及其与真树进行比较。结果显示,NJ法对获得已知树的有效率最高,MP法次之,UPGMA法最低。这14种DNA序列所构建的系统树与已知树的拓扑距离基本上是随其DNA序列长度增加而减小,但两者的相关系数并未达到显著水平,分割拓扑距离在总体上可反映树间的拓扑结构差异,但其测度精确度比通经拓扑距离要低。  相似文献   

18.
现存两栖纲分为3个目,然而它们的系统发生关系仍存在较大的争议.选择Genbank上25种两栖动物线粒体全序列,结合已测定的福建大头蛙(Lim nonectes fujianensis)线粒体基因组全序列,以天鹅和眼镜凯门鳄为外群,用线粒体tRNA基因的合并数据重建系统树.采用P AU P(version 4.0b10)软件构建MP和NJ树,tree-puzzle5.2构建ML树.结果显示,NJ树和ML树以较高的自引导值支持有尾目和蚓螈目为姐妹群,而MP树则支持无尾目和有尾目为姐妹群.  相似文献   

19.
The Maximum Parsimony (MP) problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of genetic transformations. To solve this NP-complete problem, heuristic methods have been developed, often based on local search. In this article, we focus on the influence of the neighborhood relations. After analyzing the advantages and drawbacks of the well-known Nearest Neighbor Interchange (NNI), Subtree Pruning Regrafting (SPR) and Tree-Bisection-Reconnection (TBR) neighborhoods, we introduce the concept of Progressive Neighborhood (PN) which consists in constraining progressively the size of the neighborhood as the search advances. We empirically show that applied to the Maximum Parsimony problem, this progressive neighborhood turns out to be more efficient and robust than the classic neighborhoods using a descent algorithm. Indeed, it allows to find better solutions with a smaller number of iterations or trees evaluated.  相似文献   

20.
Kang S  Tang J  Schaeffer SW  Bader DA 《PloS one》2011,6(8):e22483
Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing Orders of Genes using Novel Algorithms and high-performance Computers) software package. COGNAC uses the new DCM to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods. Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC with FastME and the combination of the state of the art DCM (Rec-I-DCM3) and GRAPPA. COGNAC clearly outperforms FastME in accuracy. COGNAC--using the new DCM--also reconstructs a much more accurate tree in significantly shorter time than GRAPPA with Rec-I-DCM3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号