首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
胡聪  胡刚  张忠华  李峰 《生态学报》2021,41(13):5300-5308
沉水植物是水生生态系统中重要的初级生产者。当前有关沉水植物生态化学计量特征的研究主要集中在非喀斯特区,而在喀斯特区的相关研究较为缺乏。因此,以广西澄江喀斯特典型湿地中的7种沉水植物为研究对象,分析沉水植物地上部分及底泥的碳(C)、氮(N)、磷(P)化学计量特征。结果显示,(1)7种沉水植物地上部分总碳、总氮和总磷平均含量最大值均出现在小茨藻(Najas minor)分别为(325.4±5.01) g/kg、(33.07±1.59) g/kg和(3.79±0.16) g/kg;C : N、C : P、N : P平均值分别为10.14±0.18、96.23±3.56和9.47±0.32,C : N最大值(11.89±0.54)出现在苦草(Vallisneria natans),C : P和N : P最大值(113.27±18.14和11.13±1.63)均出现在穗花狐尾藻(Myriophyllum spicatum)。(2)底泥有机碳、总氮、总磷、碱解氮和速效磷含量平均值分别为(15.05±0.56) g/kg、(2.06±0.08) g/kg、(0.58±0.01) g/kg、(162.53±9.16) mg/kg和(21.73±0.86) mg/kg,有机碳、总氮、总磷、碱解氮和速效磷的平均含量最大值均出现在小茨藻(N.minor)分别为(18.54±1.04) g/kg、(2.55±0.25) g/kg、(0.66±0.03) g/kg、(214.82±32.05) mg/kg和(26.37±3.31) mg/kg;底泥的C : N、C : P和N : P平均值分别是7.33±0.14、25.7±0.72和3.53±0.09,C : N、C : P和N : P最大值分别出现在金鱼藻(Ceratophyllum demersum)(7.45±0.32)、小茨藻(N. minor)(28.29±1.29)和黑藻(Hydrilla verticillata)(3.89±0.25)。(3)沉水植物的地上部分总碳与底泥的有机碳和总氮均呈显著负相关性;沉水植物的地上部分总氮与底泥有机碳、碱解氮、C : P均呈显著正相关性;沉水植物地上部分C : N、C : P均与底泥有机碳、总氮、总磷、碱解氮、C : P、N : P呈显著负相关,表明不同喀斯特湿地沉水植物和底泥之间的养分耦联性不同。本研究为喀斯特湿地生态系统生态化学计量学研究提供理论依据。  相似文献   

2.
了解中国鱼类中硼的本底含量,为科学监管违法添加提供科学依据。方法:2013年在渤海、黄海、东海、南海以及内陆地区的捕捞、养殖环节采集鲜活鱼类样品,应用电感耦合等离子体质谱(ICP-MS)法检测样品中的硼含量。结果:共采集鱼类样品560份,硼检出率为100%,硼含量平均值为0.47mg/kg,中位数为0.37mg/kg,最小值和最大值分别为0.03、3.96mg/kg。水域性质、采样地区和生产模式都是影响鱼类中硼含量的重要因素。结论:建议将2.58mg/kg作为鱼类中硼含量的本底值。  相似文献   

3.
湖南烟区土壤交换性钙、镁含量及对烤烟品质的影响   总被引:28,自引:0,他引:28  
分析了湖南烟区主要土壤类型交换性钙、镁元素含量状况及其对烟叶品质的影响,结果表明:(1)土壤交换性钙、镁含量在不同土壤类型间存在显著性差异,交换性钙含量平均为8.87cmol/kg,以红壤含量最高;交换性镁含量平均为1.16cmol/kg,以黄棕壤含量最高;交换性钙镁比值大小依次为:红壤(11.74)>水稻土(10.25)>黄壤(6.84)>黄棕壤(6.14),在烟叶实际生产中,应重视镁肥在红壤和水稻土中的施用;(2)烟叶钙含量偏高(21.93g/kg±4.37g/kg),烟叶镁含量偏低(2.52g/kg±1.26g/kg),两者均存在广泛的变异性;(3)整体来看,烟叶钙含量随土壤中交换性钙含量的升高和镁含量的降低而显著升高;烟叶镁含量随土壤交换性镁含量的升高而升高,与土壤交换性钙含量的相关性不显著;(4)典型相关分析表明,土壤中交换性镁含量的降低可能引起烟叶钾含量的提高,从而使得烟叶钾素和镁素含量达到较好的平衡;(5)土壤交换性钙、镁含量与烟叶其它化学成分指标的相关分析表明,土壤交换性钙有利于烟株对硼和氯素的吸收,对氮、锌和锰素的吸收则有显著的抑制作用;而土壤交换性镁有利于烟叶总糖、硼素和锰素的积累,对氮、磷、铁和锌素的吸收具有显著的抑制作用。  相似文献   

4.
为探讨黄河三角洲海岸带湿地不同水盐条件下植物叶片化学计量特征的季节动态及植物生长的限制性营养元素,以滨州贝壳堤岛与湿地国家级自然保护区内的柽柳、杠柳、酸枣3种优势灌木为研究对象,于2017-2018年的生长季(5-10月)每月定期采集叶片样品,测定叶片C、N、P含量。结果表明,生长季内3种灌木叶片C含量呈逐渐上升趋势;叶片N、P含量呈先下降后上升趋势,说明3种灌木采用防御性生活史策略适应盐生和干旱生境。3种灌木叶片C平均含量分别为(399.65±2.66)mg/g、(424.32±1.59)mg/g、(437.47±1.08)mg/g,低于全国(455.1 mg/g)及全球(461.6 mg/g)水平,呈现盐生生境下较低的植物碳储存能力。3种灌木叶片N和P平均含量分别为(30.14±0.26)mg/g和(1.81±0.03)mg/g、(23.18±0.38)mg/g和(2.06±0.04)mg/g、(27.36±0.49)mg/g和(2.01±0.03)mg/g,显著高于全国(N∶20.2 mg/g,P:1.46 mg/g)及全球(N∶19.3-20.1 mg/g,P:1.11-1.42 mg/g)水平。叶片C∶N∶P比呈先上升后下降的趋势,叶片P含量对C∶N∶P比变化具有主导作用。3种灌木叶片C∶N∶P质量比分别为246∶17∶1、224∶12∶1、237∶14∶1,说明柽柳的水盐胁迫适应能力高于杠柳和酸枣。从叶片N、P化学计量特征看,生长季内,柽柳生长一定程度上受土壤P限制,杠柳生长受到土壤N限制,酸枣生长则受土壤N、P共同限制,说明3种灌木的生物地球化学生态位发生了分化,避免了对同种资源的竞争,利于物种共生。  相似文献   

5.
赵睿  卜红梅  宋献方 《生态学报》2021,41(6):2439-2450
在再生水补水河道内,芦苇(Phragmites australis)受高氮再生水的长期影响,具有独特的碳(C)、氮(N)化学计量特征。为查明芦苇C、N化学计量特征及其对高氮环境的响应,在芦苇生长季节(5、7、9月份),分析了再生水补水的潮白河顺义段内河水、土壤及芦苇各器官(根、茎和叶)中C、N含量及碳氮比(C/N)。结果表明:河水中C、N含量和C/N比分别在22.20-37.25 mg/L、2.24-11.20 mg/L和3.33-9.92之间。土壤中C、N含量和C/N比的范围为5.69-35.17、0.28-2.63、8.77-25.39。在整个生长季节的所有采样点内,芦苇根、茎和叶中C含量的平均值分别为(170.84±63.56)、(369.02±39.12)、(431.80±96.70) mg/g;N含量的平均值分别为(8.20±3.96)、(14.11±6.22)和(30.73±8.66) mg/g;C/N比的平均值分别为23.89±12.84、32.65±18.48、15.21±5.60。方差分析表明,芦苇各器官中C、N计量特征具有显著的季节性差异(P<0.05),这主要与芦苇在生长过程中的生理作用有关。环境中C、N计量特征具有显著的空间差异(P<0.05),受环境变量的影响,芦苇叶中N含量和C/N比从上游到下游显著降低(P<0.05)。逐步回归分析的结果显示,土壤和河水中的C、N含量能够解释芦苇叶中71.0%的变量(P<0.05);土壤中C、N含量和河水中N含量能够解释芦苇叶C/N比82.6%的变量(P<0.05)。相关分析指出,河水中N含量与土壤中N含量显著正相关(P<0.05),说明土壤受到高氮再生水的影响而具有较强的供N能力。高氮环境下,芦苇叶中N含量较高;相较于芦苇茎和叶,根中C含量较小。研究证明在再生水补水河道中,芦苇对环境中的N有良好的吸收能力,其C、N计量特征对高氮环境表现出明显的响应。  相似文献   

6.
阐述了低光照强度和正常光照条件下长春花(Catharanthus roseus)幼苗叶片中可溶性糖、生物碱及内源激素等几种生理活性物质含量的动态变化,以揭示弱光胁迫对长春花生理代谢的影响及上述生理代谢对植物适应弱光环境的生态学意义。结果显示,弱光培养提高了长春花在自身支撑结构的投入,如叶柄长和节间长都显著增加,同时抑制了有性生殖。在弱光培养的第1周,长春花叶片中果糖(fructose,Fru)、葡萄糖(glucose,Glc)和蔗糖(sucrose,Suc)的含量分别由处理前的(0.62±0.01),(1.86±0.12),(0.24±0.01)mg/g FW下降为(0.38±0.02),(0.60±0.03),(0.17±0.02)mg/g FW,均显著低于对照(P〈0.01),表明碳同化水平下降。长春花叶片中文朵灵(vindoline,VIN)和长春质碱(catharanthine,CAT)含量在弱光条件下呈显著增加趋势,处理结束时是对照的3倍左右,而它们的耦合产物长春碱(vinblastine,VLB)合成和积累受到抑制,其含量在第3周时仅为对照的50%。弱光条件处理前2周促进了长春花叶片中脱落酸(abscisic acid,ABA)、赤霉素(gibberelline,GA3)和吲哚乙酸(indole-3-acetic acid,IAA)含量水平的积累。这些结果表明,在弱光条件下长春花幼苗的上述生理代谢都发生着显著的变化,可能在植物适应弱光胁迫过程中发挥着积极的调控作用。  相似文献   

7.
会仙岩溶湿地4种覆被下土壤酶活性和微生物生物量   总被引:1,自引:0,他引:1  
研究湿地系统中的稻田被撂荒以后土壤酶活性和微生物生物量的变化可以为湿地的保护提供参考依据。以桂林会仙岩溶湿地为研究样地,采集芦苇湿地、华科拉莎草湿地、稻田撂荒地(以双穗雀稗和莲子草为优势植被)和稻田的耕层土壤样品,采用比色法和氯仿熏蒸法分别检测土壤酶活性和微生物生物量。结果表明,稻田撂荒地的土壤微生物生物量碳(MBC)为(345.20±30.06) mg/kg,显著低于其它三种覆被下的土壤;微生物生物量氮(MBN)、微生物DNA、蔗糖酶活性和碱性磷酸酶活性分别为(48.03±18.48) mg/kg、(5.65±1.48)μg/kg、(19.16±1.43) mg g-1(24h)-1和(2.20±0.94) mg g-1(24h)-1,均显著低于稻田,而与两种天然湿地没有显著差异。主成分分析表明,稻田撂荒地能与稻田明显分开,而与其它两种覆被土壤有所交叉。统计分析表明,MBC和碱性磷酸酶活性均与pH呈显著正相关关系(P<0.05);MBN、蔗糖酶活性和碱性磷酸酶活性均与土壤总有机碳(SOC)呈显著的正相关关系(P<0.05);土壤微生物DNA与SOC、总氮(TN)和碱解氮(AN)均呈显著正相关关系(P<0.01),与Mg2+呈显著正相关关系(P<0.05)。以上研究结果表明,会仙湿地中的稻田在撂荒以后,土壤微生物生物量和两种土壤酶活性显著降低,影响微生物生物量和土壤酶活性变化的主要因素是pH、SOC、TN、AN和Mg2+。因此,建议在稻田撂荒地上重新种植水稻,以加快会仙岩溶湿地的恢复过程。  相似文献   

8.
烤烟硝酸盐含量与土壤养分的关系   总被引:11,自引:2,他引:9  
许自成  陈伟  肖汉乾  吴军  黄平俊 《生态学报》2006,26(6):1889-1895
采用多元统计分析方法研究了湖南烤烟叶片硝酸盐、亚硝酸盐含量与土壤养分之间的关系,结果表明:(1)典型相关分析证实烟叶硝酸盐、亚硝酸盐含量与土壤主要含氮养分(土壤全氮、碱解氮、铵态氮)及有机质含量的关系密切,与土壤其他养分含量的相关性较小,反映出在一定范围内,随着土壤含氮养分及有机质含量的增加,烟叶(亚)硝酸盐含量呈现增加的趋势,且土壤含氮养分及有机质含量与烟叶硝酸盐含量关系的密切程度高于与亚硝酸盐含量的相关;(2)根据烟叶硝酸盐、亚硝酸盐含量及其相应的植烟土壤养分(有机质、全氮、碱解氮、铵态氮)含量的大小,通过聚类分析把同一等级的烟叶样品分为高、中、低3类,不同类别相比较,有机质含量越高的土壤,其土壤全氮、碱解氮、铵态氮含量以及相应的烟叶硝酸盐、亚硝酸盐含量也越高,说明土壤有机质的高低,直接影响了土壤氮素的供应状况,进而影响了烟叶硝态氮含量的积累;(3)根据聚类分析结果建立了不同等级烟叶硝酸盐、亚硝酸盐含量高低的判别函数,可作为烟叶硝态氮含量在不同土壤肥力条件下判别归类的参考依据。  相似文献   

9.
湘南烟区生态因素与烤烟质量的综合评价   总被引:13,自引:0,他引:13       下载免费PDF全文
 以湘南烟区气候、土壤等生态因素和烟叶质量状况为基础数据资料,运用模糊数学隶属函数模型对该区的气候适生性、土壤适宜性和烟叶质量可用性进行了综合评价,合理地进行了该区植烟区域的划分。结果表明:1)湘南烟区的气候适生性指数(Climate feasibility index, CFI)为(79.59%±3.96%),变幅为74.71%~83.98%;该区烟叶大田生长期气温适宜,日均温≥20 ℃持续天数较长,≥10 ℃活动积温较高,昼夜温差较小,降雨充沛,相对湿度较高,日照百分率较低。2 )湘南烟区的土壤适宜性指数(Soil feasibility index, SFI)为(43.92%±15.49%),变幅为13.32%~82.82%;该区土壤具有较强的保肥能力,有机质、氮素、速效磷及多种微量元素含量丰富,但pH值中性偏碱,全磷和钾素含量难以满足烟株需求,且交换性钙镁比值不协调,有效硫含量偏高,有效硼缺乏。3)湘南烟叶外观质量指数(Appearance quality index, AQI)和感观质量指数(Sen sory quality index, SQI)分别为(86.65%±3.29%)和(63.08%±0.74%),烟叶成熟度较好,叶片结构疏松,香气质较好,杂气和刺激性相对较小。  相似文献   

10.
地球表层元素硅(Si)的生物地球化学循环影响全球初级生产力和全球碳循环进而影响地球环境变化。土壤生物硅(BSi)因其易溶解而成为岩石圈-土壤圈-生物圈-水圈等圈层之间Si迁移-转化的枢纽。采集海南岛西南部的热带季雨林、经济林(橡胶林、桉树林、芒果林)和农作物(香蕉、甘蔗)土壤样品。采用热碱消化连续提取法萃取BSi;运用相关分析和主成分分析法识别土壤BSi含量变化的主要驱动因素。结果表明:研究区不同植物群落土壤BSi含量从大到小依次为:香蕉地((2.38±0.72)mg/g)>热带季雨林((1.86±1.34) mg/g)>橡胶林((1.42±0.81) mg/g)>桉树林((1.22±0.28) mg/g)>芒果林((0.98±0.71) mg/g)>甘蔗地((0.62±0.74) mg/g);研究区土壤BSi含量存在随群落变化的季节变化:森林群落土壤 BSi含量干季大于湿季,农业草本群落(香蕉和甘蔗)土壤BSi含量则出现湿季大于干季的特征。研究区土壤BSi含量变化主要受生物因素(总氮和碳/氮(C/N))和非生物因素(化学风化程度)耦合驱动。在全球尺度上,海南岛西南部土壤BSi含量(1.43 mg/g)低于热带雨林土壤BSi含量(2.5 mg/g),揭示水热同期的季风气候区山地土壤较活跃的微生物活动和较强的降雨、径流侵蚀作用,均有利于土壤BSi发生迁移-转换,最终以溶解态硅的形式随地表径流注入南海,在一定程度上保持南海生态系统的营养成分结构,确保南海生态系统良性循环。  相似文献   

11.
High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.Key words: Bor genes, boron tolerance, boron toxicity, efflux pumping, leaf necrosis, membrane transportB-toxic soils are widespread throughout agricultural areas of the world where they cause significant and often substantial reductions in crop quality and yield. The mechanism by which B is toxic to plants is not well understood1 but toxicity symptoms include reduced root growth which affects uptake of water and nutrients, and the development of necrotic patches on leaves which impairs photosynthesis. Tolerance to B toxicity has been recognized in a number of crops, notably in cereals. In most cases, tolerance is achieved by reduced uptake of B into the root, which then leads to reduced uptake into the shoot. Genetic studies established that in barley, a locus associated with reduced tissue B occurred on chromosome 4 and that this locus could be transferred to other barley cultivars with desirable agronomic traits.2Hayes and Reid3 made a careful study of the characteristics of B uptake in a highly tolerant landrace barley cultivar Sahara, and found that although B was highly permeable, the root B concentration in this cultivar could be maintained at only half that in the external medium, whereas in sensitive cultivars, B was the same in both intracellular and extracellular phases. It was concluded that tolerant cultivars must have a membrane active transporter that exports B from the root. A B exporter, AtBor1 had previously been discovered in Arabidopsis where it was involved in B loading into the xylem4 but it was later found to be degraded under high B conditions5 and therefore would not be useful in B tolerance.However, other Bor1 homologues were subsequently discovered in Arabidopsis and in rice. Based on homology with rice, Reid6 cloned genes from barley and from wheat (HvBor2 and Tabor2 respectively) which were shown to be strongly upregulated in roots of tolerant cultivars, and virtually undetectable in sensitive cultivars. Thus, a simple mechanism to explain tolerance was established; efflux of B from the root reduced the intracellular concentration of B in the root cells, thereby reducing toxicity and improving root growth. At the same time, the lower root content meant that less B was transferred to the shoot, resulting in lower shoot toxicity.Yet there remained several unanswered questions regarding B toxicity. Firstly, it was commonly observed that toxicity symptoms were not reliably correlated with leaf B concentration, and that often after rain, toxicity symptoms became less severe. Nable et al.7 had investigated the effect of rain on shoot B concentrations and concluded that although rain did reduce the B concentration in leaves, it did not affect growth and yield. Secondly, field trials with cultivars in which the B tolerance traits were expressed, did not show the improvements in growth and yield that could be observed in glasshouse trials.8,9Our recent work10 has provided new insights into these phenomena. Sensitive and tolerant cultivars of both wheat and barley were grown in varying levels of B. Then, ignoring the level of B in the growth solution, leaves of the different cultivars that displayed the same degree of leaf necrosis were selected. This revealed that in the tolerant cultivars, necrosis began to appear at leaf B levels that were two-to five-fold higher than in sensitive cultivars. Since no internal tolerance mechanism had been reported, it was hypothesised that in the tolerant cultivars, internal toxicity was reduced by pumping B from the cytoplasm into the cell wall where B is much less toxic. To prove this hypothesis three types of experiment were conducted. Firstly protoplasts were isolated from leaves of tolerant and sensitive cultivars of barley, and it was shown that when incubated in the same concentration of B, the tolerant cultivar was able to reduce the intracellular B concentration to approximately half that of the sensitive cultivar. Secondly, it was reasoned that if more B was accumulated in the apoplast of the tolerant cultivar, then it should be more quickly released by washing of the leaf; this was confirmed. Thirdly, it was shown that the same efflux transporters that were responsible for B export from the root were also highly expressed in leaves of tolerant cultivars of wheat and barley. The combination of these three experiments provided compelling evidence that redistribution of B in the leaf was a significant factor in B tolerance.The elution experiment also highlighted the fact that because B is highly soluble and has high membrane permeability, it can easily be washed from leaves. Obviously in the field B could be removed from leaves by rain, but no positive effect of this on growth had been quantified. In our experiments, we simulated the average rainfall during the early growing season in a high B region of Southern Australia by spraying plants with calibrated amounts of water for 16 d. At high B concentrations, rain reduced leaf B by around 50% while simultaneously improving growth of shoots by up to 90%. Rather surprisingly, the rain treatment, which had no significant effect on root B concentrations, caused a two-fold increase in root growth, presumably by improving the supply of photosynthate from the shoot.This study has enabled an evaluation of the importance of three main factors in determining the severity of B toxicity; two genetically determined processes, efflux pumping of B in roots and leaves, coupled with the variable leaching of B from leaves by rain (Fig. 1). The results also provide an explanation for the poor correlations observed between toxicity and shoot B concentrations in cereals.7,11Open in a separate windowFigure 1Summary of processes contributing to reduced B toxicity in wheat and barley. The intensity of shading indicates the level of B in different regions of the plant. Boron (B) enters the leaf via the xylem and continues to accumulate as the leaf grows. When plants are grown in high concentrations of B, the older parts of the leaf become necrotic first while the younger basal tissues continue to expand. In tolerant cultivars, B efflux transporters in leaves pump B from the cytoplasm where it is toxic into the cell walls where it can be tolerated at high concentrations. Sensitive cultivars have a very low capacity for B efflux and therefore retain much higher concentrations inside the cell than in tolerant cultivars. rain can remove large amounts of B from leaves, thereby alleviating toxicity. In roots of tolerant cultivars, the same B efflux transporters that occur in leaves are used to pump B from the cells into the external medium. This reduces the toxicity to roots and limits the amount of B entering the xylem and reaching the leaves.  相似文献   

12.
Summary The current criteria for evaluating the boron (B) hazard of irrigation water for specified crops are based on the concentration of B in the irrigation water without consideration of soil properties or the leaching fraction. Experiments were conducted to determine the influence of B sorption capacity on plant uptake of B at rates of 0.1, 2.5, 5.0 and 10.0 ppm B in the irrigation water with a leaching fraction of 0.5. A relatively B sensitive crop, oats (Avena sativa), was grown on four arid-region soils of varying B sorption capacities. The results show that B in solution rather than sorbed B influenced B toxicity. Contribution from the Department of Soils, Water and Engineering, The University of Arizona, Tucson, Arizona 85721. Arizona Agricultural Experiment Station No. 2508. Research Associates and Associate Professor, respectively. The senior author is currently at the Department of Soils and Irrigation, American University of Beirut Beirut, Lebanon.  相似文献   

13.
The findings of a study to identify and quantify the orders of magnitude for major reservoirs and flows of boron (B) in the environment are outlined. The orders of magnitude for B reservoirs and flows arising through natural processes, such as the hydrological cycle and volcanism, are compared with those arising from anthropogenic activities, such as coal combustion and the extraction and use of borates for commercial purposes. The major stores and reservoirs for B have been identified, in order of magnitude, as the continental and oceanic crusts (1018 kg B), the oceans (1015 kg B), groundwater (1011 kg B), ice (1011 kg B), coal deposits (1010 kg B), commercial borate deposits (1010 kg B), biomass (1010 kg B), and surface waters (108 kg B). The largest flows of B in the environment arise from the movement of B into the atmosphere from oceans, at between 1.3 * 109 kg and 4.5 * 109 kg B per annum. Other hydrological flows are also important. Drainage from soil systems into groundwaters and surface waters accounts for between 4.3 * 108 kg and 1.3 * 109 kg B per annum. B mining and volcanic eruptions represent the next most significant B flows, accounting for approx 4.0 * 108 kg and 3.0 * 108 kg B, respectively.  相似文献   

14.
A review of boron effects in the environment   总被引:5,自引:0,他引:5  
Boron (B) is a naturally occurring element that is found in the form of borates in the oceans, sedimentary rocks, coal, shale, and in some soils. Borates are released naturally into the atmosphere and aquatic environment from oceans, geothermal steams, and weathering of clay-rich sedimentary rocks. B is also released to a lesser extent from anthropogenic sources. B concentrations in air range from <0.5 to 80 ng/m3 with an average of 20 ng/m3, and in soils from 10 to 300 mg/kg with an average of 30 mg/kg. Concentrations of B in surface freshwaters are typically < 0.1–0.5 mg/L; much higher concentrations are measured in a few areas, depending on the geochemical nature of the drainage catchment. B accumulates in both aquatic and terrestrial plants, but it does not appear to be biomagnified through the food chain. No observed effect concentrations (NOECs) for aquatic invertebrates tend to be in the range of 6–10 mg B/L with lower values of 1–2 mg/L for community studies. No effect concentrations for fish in natural waters are around 1 mg/L, although lower values have been recorded in reconstituted water. Comparing no effect concentrations with the general ambient environmental levels indicates that the risk to aquatic ecosystems from B is low. In a few B-rich areas, natural levels will be higher; however, there is some indication that organisms may be Actapted to the local conditions. B is an essential micronutrient for higher plants with interspecies differences in the levels required for optimum growth. In general, there is a small concentration range between deficiency and toxicity; however, toxicity owing to excess B is much less common in the environment than B deficiency. Levels of B in aquatic plants growing in areas receiving B-rich runoff from irrigated fields are higher than dietary concentrations, which cause effects on the growth of young birds in the laboratory; however, the bioavailability in the field of such plant-accumulated B is uncertain.  相似文献   

15.
Summary In a glasshouse experiment with a boron deficient soil the application of nitrogen was found to decrease the boron concentration and boron uptake by lucerne (Medicago sativa). Without added boron, nitrogen applications killed the lucerne, probably by inducing severe boron deficiency. With added boron, the lowest rate of nitrogen application increased lucerne yield but further additions depressed yields. The effect was due to a physiological interaction rather than an effect of the nitrogen on the availability of the boron in the soil.  相似文献   

16.
17.
The translocation and effectiveness of foliar-fertiilized boron (B) was investigated in broccoli plants supplied via the root system with luxury, sufficient or deficient levels of B. 10B-enriched boric acid was applied three times to lower leaves, beginning one week prior to inflorescence emergence, and the shoot and floret yields, as well as the 10B and 11B contents or concentrations of xylem sap, phloem exudate and various plant parts, were determined three weeks after inflorescence emergence. The amount of 10B translocated in phloem from fed leaves to the remainder of the shoot did not exceed 0.5%, of that supplied, but it was inversely related to plant-B status. The partitioning of translocated 10B to florets (16–30%) and the degree of enhancement in floret yield (28–75%) was also inversely related to plant-B status. It is concluded that foliar-B fertilization may be more effective for preventing B deficiency than soil-derived B in leaves.Abbreviations 10B/11B mass isotopes of boron - DM dry matter - FF foliar fertilization - RF root fertilization  相似文献   

18.
Genotypic variation in boron (B) efficiency in wheat (Triticum aestivum L.) is expressed as large differences in grain set and pollen fertility under low soil B, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B transport and retranslocation can explain cultivar differences in B efficiency between B-efficient (Fang 60) and B-inefficient (SW41) wheat cultivars. Plants were grown with adequate 11B (10 μM), until the premeiotic interphase stage in anther development, then transferred into 10B at 0.1 or 10 μM. After five days, ending at the young microspore stage, plants were returned to adequate 11B. Plants were harvested at 0, 1 and 5 days after transferring into 10B, and at anthesis when fresh pollen was examined for viability. After 5 days in 0.1 μM B, pollen viability in SW41 was depressed by 47%, but pollen of Fang 60 was not affected. When B supply was low, the proportion of plant B partitioned into the ear of Fang 60 was almost twice as high as that in SW 41, enabling Fang 60 to maintain B concentration in the ear at 6.8 mg kg?1 dry weight (DW), whereas it dropped to 3.8 mg kg?1 DW in SW 41. Boron accumulation in the ear, when external supply was restricted, did not come from the 11B previously taken up by the plant. The greater 10B accumulation in ears of Fang 60 compared to SW 41, with limited external B supply, indicated that B efficiency was associated with xylem transport of B. The greater increase of 10B:11B ratio in the ear of Fang 60 compared to SW 41, over the 5 days of B interruption further indicated that greater B efficiency was associated with a stronger capability for long distance transport of B from the rooting medium into the ear via the xylem rather with than retranslocation of B from vegetative parts.  相似文献   

19.

Background and aims

Brassica napus has high boron (B) demand, but significant genotype differences exist with respect to B deficiency. The aim of this research was to elucidate the relationship between the different sensitivities of Brassica napus cultivars to low B stress and the characteristics of B uptake and transport to characterise the regulation of B efficiency in Brassica napus.

Methods

B-efficient and B-inefficient Brassica napus cultivars were used to compare the uptake and transport of B using the stable isotope 10B tracer and grafting experiments, as well as expression of B transporters by RT-PCR.

Results

B-efficient cultivars have significant advantages with regard to B limitation. The B-efficient cultivar HZ showed less severe B deficiency symptoms and higher dry biomass than the B-inefficient cultivars LW and LB. Both the amount of total B and the 10B concentration and accumulation in the shoots and roots of B-efficient HZ were higher than those of B-inefficient cultivars. In B-inefficient LW, the amount of total B and the 10B that was transported into shoots was less than in the other three cultivars and the content and accumulation of total B and 10B in the roots of B-inefficient LB were the lowest among all of the cultivars. When the roots of B-efficient HZ were used as stocks, the grafted plants showed B-efficient characteristics, such as mild B deficiency symptoms, and higher dry biomass and B accumulation, regardless of whether they originated from B-efficient or B-inefficient cultivars. In contrast, the grafted plants with B-inefficient LW used as stocks were B-inefficient. The expressions of BnBOR1;1c, BnBOR1;2a and BnNIP5;1 were up-regulated in roots under low B stress compared with the normal B condition. However, there was no obvious difference in the expressions of the three genes or of four other BnBOR1s between B-efficient and B-inefficient cultivars in low or normal B environments.

Conclusions

These results indicate that the B efficiency of Brassica napus is controlled primarily by roots, which allow more uptake and accumulation of B in B-efficient cultivars than B-inefficient cultivars in a low B environment. However the molecular mechanism regulating B efficiency in Brassica napus remains to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号