首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  国内免费   3篇
  2021年   2篇
  2020年   1篇
  2006年   2篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
作为蒸散量的测算和环境评价的一种方法,通过近年来对三温模型的研究,该文详细探讨了植被蒸腾扩散 系数(hat),并通过实验验证了它在不同环境条件下的特性和应用前景。在该模型中,hat的表示式为 hat=(Tc-Ta)/( Tp-Ta),式中Tc、Tp和Ta分别为冠层温度、没有蒸腾(蒸腾量为零)的冠层温度和气温 。理论上,植被蒸腾扩散系数的取值范围为hat≤1,hat的取值范围可以决定植被蒸腾量的大小,该系数 越小, 蒸腾量越大。为了证明hat的这些特性,在1994~1999年的5年间,用3种作物(高粱(Sorghum bicolor),番茄( Lycopersicon esculentum)和甜瓜(Cucumis melo))进行了5次试验。实验结果表明: hat值与感热通量比率(H/Hp)的值近似相等,二者之间回归线的斜率接近为1,截距接近0,回归系数为 r2=0.70。此外,hat值不仅能较好地反映植物根系区的土壤水分状况、也能较好地反应天气状况。在缺水 条件下,hat主要受根部区域的水分状况影响。 所以,hat可作为作物水分亏缺的指标。当植被受到其它 环境胁迫(污染、高温等)时,hat可作为评价环境质量的指标。植被蒸腾扩散系数的主要优点不仅是能 很好地反映蒸腾过程和确定蒸腾量,而且容易测得,便于遥感应用。  相似文献   
2.
华北山区典型人工林土壤水势动态和水分运移规律   总被引:4,自引:0,他引:4  
大规模植树造林工程有效缓解了我国北方水土流失等问题,但伴随植被生长和降水格局变化,水循环过程发生明显改变。土壤水分运动是水循环的关键过程,研究变化环境下人工林植被土壤水分运移规律,对植被生态恢复具有重要意义。基于2014-2018年多时间尺度(半小时、天、月和年)华北山区崇陵流域典型人工侧柏林和荒草土壤剖面水势监测数据,阐明不同植被覆盖下土水势动态变化规律,提出土壤水分运移和植被水分利用模式。研究结果表明:侧柏林土壤水势日变幅显著低于荒草植被,但土水势日变幅随土壤深度增加而减小的速率90 a侧柏依次大于60 a侧柏和荒草;月、年尺度侧柏林不同深度土水势变化对降水的响应大于荒草地,其中60 a侧柏林年均土水势与年降雨量显著线性相关(P<0.05)。由水势梯度和零通量面多年平均变化可知,90 a侧柏林0-50 cm土壤水呈下渗趋势,根系水力提升促使50-100 cm土壤水向上蒸散;60 a侧柏林0-20 cm、70-100 cm以及枯水年30-70 cm土壤水均以蒸散为主,根系可同时吸收利用表层和深层土壤水分;荒草地0-20 cm土壤水分蒸发强烈,且为根系主要吸水深度,20-100 cm土壤水稳定下渗。相比60 a侧柏林和荒草,90 a侧柏林的土壤调蓄能力增强,与荒草互被可减少植被间水分竞争,充分利用土壤水,从而减少流域内地表径流和土壤侵蚀量。  相似文献   
3.
再生水是城市景观河湖的重要补给水源, 然而再生水中含量较高的氮和磷营养盐会引起水体富营养化, 破坏水生态平衡。以再生水补给的潮白河为研究区, 运用高光谱技术分析了挺水植物芦苇(Phragmites australis)叶片的光谱特征, 并结合水质数据, 通过拟合模型, 探究了芦苇对再生水中氮和磷的响应关系。结果表明, 各采样点水体的总氮(TN)和总磷(TP)含量分别介于1.85-18.16 mg·L-1及0.01-0.36 mg·L-1之间, 叶绿素a (Chl a)和溶解氧(DO)含量的范围分别为0.60-47.45 μg·L-1与4.24-11.4 mg·L-1。水体富营养化较为严重, 但仍处于富氧环境。多重方差分析表明, 不同采样点之间水体的TN、TP和Chl a含量差异显著(P<0.05)。由光谱反射率及反射率一阶导数曲线可知, 水体TN含量越高, 叶片光谱在可见光区的反射率越小, 红边位置也越向波长长的方向移动(即红移)。相关分析表明, 水体TN和TP含量与吸光度值log(1/R)在可见光区的相关性较强, 且TN与log(1/R)的相关系数高于TP。芦苇叶片光谱可在一定程度上区分水体TN含量差异, 但TP对光谱特征的影响模式不明显。光谱指数与水体TN含量之间的拟合模型中, 基于光化学指数(PRI)、修正叶绿素吸收指数(MCARI)和导数叶绿素指数(DCI)的模型能够解释水体TN含量变化的62.4%-70.9% (P<0.05), 可用于再生水氮含量的定量监测。该研究证明了植物光谱技术在水体富营养化监测上的可行性, 为保障再生水修复河道水质和生态安全提供了科学依据。  相似文献   
4.
赵睿  卜红梅  宋献方 《生态学报》2021,41(6):2439-2450
在再生水补水河道内,芦苇(Phragmites australis)受高氮再生水的长期影响,具有独特的碳(C)、氮(N)化学计量特征。为查明芦苇C、N化学计量特征及其对高氮环境的响应,在芦苇生长季节(5、7、9月份),分析了再生水补水的潮白河顺义段内河水、土壤及芦苇各器官(根、茎和叶)中C、N含量及碳氮比(C/N)。结果表明:河水中C、N含量和C/N比分别在22.20-37.25 mg/L、2.24-11.20 mg/L和3.33-9.92之间。土壤中C、N含量和C/N比的范围为5.69-35.17、0.28-2.63、8.77-25.39。在整个生长季节的所有采样点内,芦苇根、茎和叶中C含量的平均值分别为(170.84±63.56)、(369.02±39.12)、(431.80±96.70) mg/g;N含量的平均值分别为(8.20±3.96)、(14.11±6.22)和(30.73±8.66) mg/g;C/N比的平均值分别为23.89±12.84、32.65±18.48、15.21±5.60。方差分析表明,芦苇各器官中C、N计量特征具有显著的季节性差异(P<0.05),这主要与芦苇在生长过程中的生理作用有关。环境中C、N计量特征具有显著的空间差异(P<0.05),受环境变量的影响,芦苇叶中N含量和C/N比从上游到下游显著降低(P<0.05)。逐步回归分析的结果显示,土壤和河水中的C、N含量能够解释芦苇叶中71.0%的变量(P<0.05);土壤中C、N含量和河水中N含量能够解释芦苇叶C/N比82.6%的变量(P<0.05)。相关分析指出,河水中N含量与土壤中N含量显著正相关(P<0.05),说明土壤受到高氮再生水的影响而具有较强的供N能力。高氮环境下,芦苇叶中N含量较高;相较于芦苇茎和叶,根中C含量较小。研究证明在再生水补水河道中,芦苇对环境中的N有良好的吸收能力,其C、N计量特征对高氮环境表现出明显的响应。  相似文献   
5.
 作为蒸散量的测算和环境评价的一种方法,通过近年来对三温模型的研究,该文详细探讨了植被蒸腾扩散 系数(hat),并通过实验验证了它在不同环境条件下的特性和应用前景。在该模型中,hat的表示式为 hat=(Tc-Ta)/( Tp-Ta),式中Tc、Tp和Ta分别为冠层温度、没有蒸腾(蒸腾量为零)的冠层温度和气温 。理论上,植被蒸腾扩散系数的取值范围为hat≤1,hat的取值范围可以决定植被蒸腾量的大小,该系数 越小, 蒸腾量越大。为了证明hat的这些特性,在1994~1999年的5年间,用3种作物(高粱(Sorghum bicolor),番茄( Lycopersicon esculentum)和甜瓜(Cucumis melo))进行了5次试验。实验结果表明: hat值与感热通量比率(H/Hp)的值近似相等,二者之间回归线的斜率接近为1,截距接近0,回归系数为 r2=0.70。此外,hat值不仅能较好地反映植物根系区的土壤水分状况、也能较好地反应天气状况。在缺水 条件下,hat主要受根部区域的水分状况影响。 所以,hat可作为作物水分亏缺的指标。当植被受到其它 环境胁迫(污染、高温等)时,hat可作为评价环境质量的指标。植被蒸腾扩散系数的主要优点不仅是能 很好地反映蒸腾过程和确定蒸腾量,而且容易测得,便于遥感应用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号