首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Prediction of protein subcellular location is a meaningful task which attracted much attention in recent years. A lot of protein subcellular location predictors which can only deal with the single-location proteins were developed. However, some proteins may belong to two or even more subcellular locations. It is important to develop predictors which will be able to deal with multiplex proteins, because these proteins have extremely useful implication in both basic biological research and drug discovery. Considering the circumstance that the number of methods dealing with multiplex proteins is limited, it is meaningful to explore some new methods which can predict subcellular location of proteins with both single and multiple sites. Different methods of feature extraction and different models of predict algorithms using on different benchmark datasets may receive some general results. In this paper, two different feature extraction methods and two different models of neural networks were performed on three benchmark datasets of different kinds of proteins, i.e. datasets constructed specially for Gram-positive bacterial proteins, plant proteins and virus proteins. These benchmark datasets have different number of location sites. The application result shows that RBF neural network has apparently superiorities against BP neural network on these datasets no matter which type of feature extraction is chosen.  相似文献   

2.
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. It is crucial to develop powerful tools to predict apoptosis protein locations for rapidly increasing gap between the number of known structural proteins and the number of known sequences in protein databank. In this study, amino acids pair compositions with different spaces are used to construct feature sets for representing sample of protein feature selection approach based on binary particle swarm optimization, which is applied to extract effective feature. Ensemble classifier is used as prediction engine, of which the basic classifier is the fuzzy K-nearest neighbor. Each basic classifier is trained with different feature sets. Two datasets often used in prior works are selected to validate the performance of proposed approach. The results obtained by jackknife test are quite encouraging, indicating that the proposed method might become a potentially useful tool for subcellular location of apoptosis protein, or at least can play a complimentary role to the existing methods in the relevant areas. The supplement information and software written in Matlab are available by contacting the corresponding author.  相似文献   

3.
Protein trafficking or protein sorting in eukaryotes is a complicated process and is carried out based on the information contaified in the protein. Many methods reported prediction of the subcellular location of proteins from sequence information. However, most of these prediction methods use a flat structure or parallel architecture to perform prediction. In this work, we introduce ensemble classifiers with features that are extracted directly from full length protein sequences to predict locations in the protein-sorting pathway hierarchically. Sequence driven features, sequence mapped features and sequence autocorrelation features were tested with ensemble learners and their performances were compared. When evaluated by independent data testing, ensemble based-bagging algorithms with sequence feature composition, transition and distribution (CTD) successfully classified two datasets with accuracies greater than 90%. We compared our results with similar published methods, and our method equally performed with the others at two levels in the secreted pathway. This study shows that the feature CTD extracted from protein sequences is effective in capturing biological features among compartments in secreted pathways.  相似文献   

4.
To understand the function of the encoded proteins, we need to be able to know the subcellular location of a protein. The most common method used for determining subcellular location is fluorescence microscopy which allows subcellular localizations to be imaged in high throughput. Image feature calculation has proven invaluable in the automated analysis of cellular images. This article proposes a novel method named LDPs for feature extraction based on invariant of translation and rotation from given images, the nature which is to count the local difference features of images, and the difference features are given by calculating the D-value between the gray value of the central pixel c and the gray values of eight pixels in the neighborhood. The novel method is tested on two image sets, the first set is which fluorescently tagged protein was endogenously expressed in 10 sebcellular locations, and the second set is which protein was transfected in 11 locations. A SVM was trained and tested for each image set and classification accuracies of 96.7 and 92.3 % were obtained on the endogenous and transfected sets respectively.  相似文献   

5.
This paper introduces a new subcellular localization system (TSSub) for eukaryotic proteins. This system extracts features from both profiles and amino acid sequences. Four different features are extracted from profiles by four probabilistic neural network (PNN) classifiers, respectively (the amino acid composition from whole profiles; the amino acid composition from the N-terminus of profiles; the dipeptide composition from whole profiles and the amino acid composition from fragments of profiles). In addition, a support vector machine (SVM) classifier is added to implement the residue-couple feature extracted from amino acid sequences. The results from the five classifiers are fused by an additional SVM classifier. The overall accuracies of this TSSub reach 93.0 and 77.4% on Reinhardt and Hubbard's eukaryotic protein dataset and Huang and Li's eukaryotic protein dataset, respectively. The comparison with existing methods results shows TSSub provides better prediction performance than existing methods. AVAILABILITY: The web server is available from http://166.111.24.5/webtools/TSSub/index.html.  相似文献   

6.
7.
Membrane proteins are gatekeepers to the cell and essential for determination of the function of cells. Identification of the types of membrane proteins is an essential problem in cell biology. It is time-consuming and expensive to identify the type of membrane proteins with traditional experimental methods. The alternative way is to design effective computational methods, which can provide quick and reliable predictions. To date, several computational methods have been proposed in this regard. Several of them used the features extracted from the sequence information of individual proteins. Recently, networks are more and more popular to tackle different protein-related problems, which can organize proteins in a system level and give an overview of all proteins. However, such form weakens the essential properties of proteins, such as their sequence information. In this study, a novel feature fusion scheme was proposed, which integrated the information of protein sequences and protein-protein interaction network. The fused features of a protein were defined as the linear combination of sequence features of all proteins in the network, where the combination coefficients were the probabilities yielded by the random walk with restart algorithm with the protein as the seed node. Several models with such fused features and different classification algorithms were built and evaluated. Their performance for predicting the type of membrane proteins was improved compared with the models only with the sequence features or network information.  相似文献   

8.
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization via the following procedures: based on the optimal splice site of each protein sequence, we divided a sequence into sorting signal part and mature protein part, and extracted sequence features from each part separately. Then, the combined features were fed into the SVM classifier to perform the prediction. By the jackknife test on a benchmark dataset in which none of proteins included has more than 90% pairwise sequence identity to any other, the overall accuracies achieved by the method are 94.5% and 90.3% for prokaryotic and eukaryotic proteins, respectively. The results indicate that the prediction quality by our method is quite satisfactory. It is anticipated that the current method may serve as an alternative approach to the existing prediction methods.  相似文献   

9.
Subcellular location is an important functional annotation of proteins. An automatic, reliable and efficient prediction system for protein subcellular localization is necessary for large-scale genome analysis. This paper describes a protein subcellular localization method which extracts features from protein profiles rather than from amino acid sequences. The protein profile represents a protein family, discards part of the sequence information that is not conserved throughout the family and therefore is more sensitive than the amino acid sequence. The amino acid compositions of whole profile and the N-terminus of the profile are extracted, respectively, to train and test the probabilistic neural network classifiers. On two benchmark datasets, the overall accuracies of the proposed method reach 89.1% and 68.9%, respectively. The prediction results show that the proposed method perform better than those methods based on amino acid sequences. The prediction results of the proposed method are also compared with Subloc on two redundance-reduced datasets.  相似文献   

10.
The function of protein is closely correlated with it subcellular location. Prediction of subcellular location of apoptosis proteins is an important research area in post-genetic era because the knowledge of apoptosis proteins is useful to understand the mechanism of programmed cell death. Compared with the conventional amino acid composition (AAC), the Pseudo Amino Acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, a novel approach is presented to predict apoptosis protein solely from sequence based on the concept of Chou's PseAA composition. The concept of approximate entropy (ApEn), which is a parameter denoting complexity of time series, is used to construct PseAA composition as additional features. Fuzzy K-nearest neighbor (FKNN) classifier is selected as prediction engine. Particle swarm optimization (PSO) algorithm is adopted for optimizing the weight factors which are important in PseAA composition. Two datasets are used to validate the performance of the proposed approach, which incorporate six subcellular location and four subcellular locations, respectively. The results obtained by jackknife test are quite encouraging. It indicates that the ApEn of protein sequence could represent effectively the information of apoptosis proteins subcellular locations. It can at least play a complimentary role to many of the existing methods, and might become potentially useful tool for protein function prediction. The software in Matlab is available freely by contacting the corresponding author.  相似文献   

11.
A genetic algorithm (GA) for feature selection in conjunction with neural network was applied to predict protein structural classes based on single amino acid and all dipeptide composition frequencies. These sequence parameters were encoded as input features for a GA in feature selection procedure and classified with a three-layered neural network to predict protein structural classes. The system was established through optimization of the classification performance of neural network which was used as evaluation function. In this study, self-consistency and jackknife tests on a database containing 498 proteins were used to verify the performance of this hybrid method, and were compared with some of prior works. The adoption of a hybrid model, which encompasses genetic and neural technologies, demonstrated to be a promising approach in the task of protein structural class prediction.  相似文献   

12.
文中提出了一种简单有效的蛋白质亚细胞区间定位预测方法,为进一步了解蛋白质的功能和性质提供理论基础。运用稀疏编码,结合氨基酸组成信息提取蛋白质序列特征,基于不同字典大小对得到的特征进行多层次池化整合,并送入支持向量机进行分类。经Jackknife检验,在数据集ZD98、CH317和Gram1253上的预测成功率分别达到95.9%、93.4%和94.7%。实验证明基于多层次稀疏编码的分类预测算法能显著提高蛋白质亚细胞区间定位的预测精度。  相似文献   

13.

Background  

Fluorescence microscopy is widely used to determine the subcellular location of proteins. Efforts to determine location on a proteome-wide basis create a need for automated methods to analyze the resulting images. Over the past ten years, the feasibility of using machine learning methods to recognize all major subcellular location patterns has been convincingly demonstrated, using diverse feature sets and classifiers. On a well-studied data set of 2D HeLa single-cell images, the best performance to date, 91.5%, was obtained by including a set of multiresolution features. This demonstrates the value of multiresolution approaches to this important problem.  相似文献   

14.
According to the recent experiments, proteins in budding yeast can be distinctly classified into 22 subcellular locations. Of these proteins, some bear the multi-locational feature, i.e., occur in more than one location. However, so far all the existing methods in predicting protein subcellular location were developed to deal with only the mono-locational case where a query protein is assumed to belong to one, and only one, subcellular location. To stimulate the development of subcellular location prediction, an augmentation procedure is formulated that will enable the existing methods to tackle the multi-locational problem as well. It has been observed thru a jackknife cross-validation test that the success rate obtained by the augmented GO-FnD-PseAA algorithm [BBRC 320 (2004) 1236] is overwhelmingly higher than those by the other augmented methods. It is anticipated that the augmented GO-FunD-PseAA predictor will become a very useful tool in predicting protein subcellular localization for both basic research and practical application.  相似文献   

15.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

16.
As the number of complete genomes rapidly increases, accurate methods to automatically predict the subcellular location of proteins are increasingly useful to help their functional annotation. In order to improve the predictive accuracy of the many prediction methods developed to date, a novel representation of protein sequences is proposed. This representation involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids. For calculating the local features, each sequence is split into three parts: N-terminal, middle, and C-terminal. The N-terminal part is further divided into four regions to consider ambiguity in the length and position of signal sequences. We tested this representation with support vector machines on two data sets extracted from the SWISS-PROT database. Through fivefold cross-validation tests, overall accuracies of more than 87% and 91% were obtained for eukaryotic and prokaryotic proteins, respectively. It is concluded that considering the respective features in the N-terminal, middle, and C-terminal parts is helpful to predict the subcellular location.  相似文献   

17.
林昊 《生物信息学》2009,7(4):252-254
由于蛋白质亚细胞位置与其一级序列存在很强的相关性,利用多样性增量来描述蛋白质之间氨基酸组分和二肽组分的相似程度,采用修正的马氏判别式(这里称为IDQD方法)对分枝杆菌蛋白质的亚细胞位置进行了预测。利用Jackknife检验对不同序列相似度下的蛋白质数据集进行了预测研究,结果显示,当数据集的序列相似度小于等于70%时,算法的预测精度稳定在75%左右。在对整体852条蛋白质的预测成功率达到87.7%,这一结果优于已有算法的预测精度,说明IDQD是一种有效的分枝杆菌蛋白质亚细胞预测方法。  相似文献   

18.
The systematic study of subcellular location patterns is required to fully characterize the human proteome, as subcellular location provides critical context necessary for understanding a protein's function. The analysis of tens of thousands of expressed proteins for the many cell types and cellular conditions under which they may be found creates a need for automated subcellular pattern analysis. We therefore describe the application of automated methods, previously developed and validated by our laboratory on fluorescence micrographs of cultured cell lines, to analyze subcellular patterns in tissue images from the Human Protein Atlas. The Atlas currently contains images of over 3000 protein patterns in various human tissues obtained using immunohistochemistry. We chose a 16 protein subset from the Atlas that reflects the major classes of subcellular location. We then separated DNA and protein staining in the images, extracted various features from each image, and trained a support vector machine classifier to recognize the protein patterns. Our results show that our system can distinguish the patterns with 83% accuracy in 45 different tissues, and when only the most confident classifications are considered, this rises to 97%. These results are encouraging given that the tissues contain many different cell types organized in different manners, and that the Atlas images are of moderate resolution. The approach described is an important starting point for automatically assigning subcellular locations on a proteome-wide basis for collections of tissue images such as the Atlas.  相似文献   

19.
选取钱塘江中游地区约348 km2为实验区,综合归一化植被指数、纹理信息和数字地形模型(DEM)派生的高程、坡度等辅助数据,对SPOT5影像的光谱特征进行扩展,建立基于C5.0算法的模型,实现对土地利用信息的自动提取,并将分类结果与基于传统像元的最大似然分类结果作比较。结果表明,训练样本的有效性和辅助特征数据的参与可排除干扰信息;随着样点数量的增加,分类精度提高;决策树向决策规则的转化,能够在保证精度的基础上使规则更易理解;利用C5.0算法的总精度达到94.68%,较最大似然分类法提高了7.37%,有效实现了高精度分类,是保证钱塘江流域地区土地利用遥感信息快速准确提取的方法之一。  相似文献   

20.
Proteomics, the large scale identification and characterization of many or all proteins expressed in a given cell type, has become a major area of biological research. In addition to information on protein sequence, structure and expression levels, knowledge of a protein's subcellular location is essential to a complete understanding of its functions. Currently, subcellular location patterns are routinely determined by visual inspection of fluorescence microscope images. We review here research aimed at creating systems for automated, systematic determination of location. These employ numerical feature extraction from images, feature reduction to identify the most useful features, and various supervised learning (classification) and unsupervised learning (clustering) methods. These methods have been shown to perform significantly better than human interpretation of the same images. When coupled with technologies for tagging large numbers of proteins and high-throughput microscope systems, the computational methods reviewed here enable the new subfield of location proteomics. This subfield will make critical contributions in two related areas. First, it will provide structured, high-resolution information on location to enable Systems Biology efforts to simulate cell behavior from the gene level on up. Second, it will provide tools for Cytomics projects aimed at characterizing the behaviors of all cell types before, during, and after the onset of various diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号