首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A novel hybrid genetic algorithm (GA)/radial basis function neural network (RBFNN) technique, which selects features from the protein sequences and trains the RBF neural network simultaneously, is proposed in this paper. Experimental results show that the proposed hybrid GA/RBFNN system outperforms the BLAST and the HMMer.  相似文献   

3.
Detecting divergence between oncogenic tumors plays a pivotal role in cancer diagnosis and therapy. This research work was focused on designing a computational strategy to predict the class of lung cancer tumors from the structural and physicochemical properties (1497 attributes) of protein sequences obtained from genes defined by microarray analysis. The proposed methodology involved the use of hybrid feature selection techniques (gain ratio and correlation based subset evaluators with Incremental Feature Selection) followed by Bayesian Network prediction to discriminate lung cancer tumors as Small Cell Lung Cancer (SCLC), Non-Small Cell Lung Cancer (NSCLC) and the COMMON classes. Moreover, this methodology eliminated the need for extensive data cleansing strategies on the protein properties and revealed the optimal and minimal set of features that contributed to lung cancer tumor classification with an improved accuracy compared to previous work. We also attempted to predict via supervised clustering the possible clusters in the lung tumor data. Our results revealed that supervised clustering algorithms exhibited poor performance in differentiating the lung tumor classes. Hybrid feature selection identified the distribution of solvent accessibility, polarizability and hydrophobicity as the highest ranked features with Incremental feature selection and Bayesian Network prediction generating the optimal Jack-knife cross validation accuracy of 87.6%. Precise categorization of oncogenic genes causing SCLC and NSCLC based on the structural and physicochemical properties of their protein sequences is expected to unravel the functionality of proteins that are essential in maintaining the genomic integrity of a cell and also act as an informative source for drug design, targeting essential protein properties and their composition that are found to exist in lung cancer tumors.  相似文献   

4.
This paper presents a fuzzy-tuned neural network, which is trained by an improved genetic algorithm (GA). The fuzzy-tuned neural network consists of a neural-fuzzy network and a modified neural network. In the modified neural network, a neuron model with two activation functions is used so that the degree of freedom of the network function can be increased. The neural-fuzzy network governs some of the parameters of the neuron model. It will be shown that the performance of the proposed fuzzy-tuned neural network is better than that of the traditional neural network with a similar number of parameters. An improved GA is proposed to train the parameters of the proposed network. Sets of improved genetic operations are presented. The performance of the improved GA will be shown to be better than that of the traditional GA. Some application examples are given to illustrate the merits of the proposed neural network and the improved GA.  相似文献   

5.
Li ZC  Zhou XB  Lin YR  Zou XY 《Amino acids》2008,35(3):581-590
Structural class characterizes the overall folding type of a protein or its domain. Most of the existing methods for determining the structural class of a protein are based on a group of features that only possesses a kind of discriminative information for the prediction of protein structure class. However, different types of discriminative information associated with primary sequence have been completely missed, which undoubtedly has reduced the success rate of prediction. We present a novel method for the prediction of protein structure class by coupling the improved genetic algorithm (GA) with the support vector machine (SVM). This improved GA was applied to the selection of an optimized feature subset and the optimization of SVM parameters. Jackknife tests on the working datasets indicated that the prediction accuracies for the different classes were in the range of 97.8–100% with an overall accuracy of 99.5%. The results indicate that the approach has a high potential to become a useful tool in bioinformatics.  相似文献   

6.
Due to the increasing gap between structure-determined and sequenced proteins, prediction of protein structural classes has been an important problem. It is very important to use efficient sequential parameters for developing class predictors because of the close sequence-structure relationship. The multinomial logistic regression model was used for the first time to evaluate the contribution of sequence parameters in determining the protein structural class. An in-house program generated parameters including single amino acid and all dipeptide composition frequencies. Then, the most effective parameters were selected by a multinomial logistic regression. Selected variables in the multinomial logistic model were Valine among single amino acid composition frequencies and Ala-Gly, Cys-Arg, Asp-Cys, Glu-Tyr, Gly-Glu, His-Tyr, Lys-Lys, Leu-Asp, Leu-Arg, Pro-Cys, Gln-Met, Gln-Thr, Ser-Trp, Val-Asn and Trp-Asn among dipeptide composition frequencies. Also a neural network model was constructed and fed by the parameters selected by multinomial logistic regression to build a hybrid predictor. In this study, self-consistency and jackknife tests on a database constructed by Zhou [1998. An intriguing controversy over protein structural class prediction. J. Protein Chem. 17(8), 729-738] containing 498 proteins are used to verify the performance of this hybrid method, and are compared with some of prior works. The results showed that our two-stage hybrid model approach is very promising and may play a complementary role to the existing powerful approaches.  相似文献   

7.
Using a fermentation database for Escherichia coli producing green fluorescent protein (GFP), we have implemented a novel three-step optimization method to identify the process input variables most important in modeling the fermentation, as well as the values of those critical input variables that result in an increase in the desired output. In the first step of this algorithm, we use either decision-tree analysis (DTA) or information theoretic subset selection (ITSS) as a database mining technique to identify which process input variables best classify each of the process outputs (maximum cell concentration, maximum product concentration, and productivity) monitored in the experimental fermentations. The second step of the optimization method is to train an artificial neural network (ANN) model of the process input-output data, using the critical inputs identified in the first step. Finally, a hybrid genetic algorithm (hybrid GA), which includes both gradient and stochastic search methods, is used to identify the maximum output modeled by the ANN and the values of the input conditions that result in that maximum. The results of the database mining techniques are compared, both in terms of the inputs selected and the subsequent ANN performance. For the E. coli process used in this study, we identified 6 inputs from the original 13 that resulted in an ANN that best modeled the GFP fluorescence outputs of an independent test set. Values of the six inputs that resulted in a modeled maximum fluorescence were identified by applying a hybrid GA to the ANN model developed. When these conditions were tested in laboratory fermentors, an actual maximum fluorescence of 2.16E6 AU was obtained. The previous high value of fluorescence that was observed was 1.51E6 AU. Thus, this input condition set that was suggested by implementing the proposed optimization scheme on the available historical database increased the maximum fluorescence by 55%.  相似文献   

8.
Knowledge of protein structural class can provide important information about its folding patterns. Many approaches have been developed for the prediction of protein structural classes. However, the information used by these approaches is primarily based on amino acid sequences. In this study, a novel method is presented to predict protein structural classes by use of chemical shift (CS) information derived from nuclear magnetic resonance spectra. Firstly, 399 non-homologue (about 15% identity) proteins were constructed to investigate the distribution of averaged CS values of six nuclei ((13)CO, (13)Cα, (13)Cβ, (1)HN, (1)Hα and (15)N) in three protein structural classes. Subsequently, support vector machine was proposed to predict three protein structural classes by using averaged CS information of six nuclei. Overall accuracy of jackknife cross-validation achieves 87.0%. Finally, the feature selection technique is applied to exclude redundant information and find out an optimized feature set. Results show that the overall accuracy increased to 88.0% by using the averaged CSs of (13)CO, (1)Hα and (15)N. The proposed approach outperformed other state-of-the-art methods in terms of predictive accuracy in particular for low-similarity protein data. We expect that our proposed approach will be an excellent alternative to traditional methods for protein structural class prediction.  相似文献   

9.
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.  相似文献   

10.
11.
Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets.  相似文献   

12.
Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets.  相似文献   

13.
Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, the accuracy of existing methods is limited. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our method. Empirically, the accuracy of the method correlates positively with the local match rate; therefore, we employ it to predict the local structures of positions with a high local match rate. For positions with a low local match rate, we propose a neural network prediction method. To better utilize the knowledge-based and neural network methods, we design a hybrid prediction method, HYPLOSP (HYbrid method to Protein LOcal Structure Prediction) that combines both methods. To evaluate the performance of the proposed methods, we first perform cross-validation experiments by applying our knowledge-based method, a neural network method, and HYPLOSP to a large dataset of 3,925 protein chains. We test our methods extensively on three different structural alphabets and evaluate their performance by two widely used criteria, Maximum Deviation of backbone torsion Angle (MDA) and Q(N), which is similar to Q(3) in secondary structure prediction. We then compare HYPLOSP with three previous studies using a dataset of 56 new protein chains. HYPLOSP shows promising results in terms of MDA and Q(N) accuracy and demonstrates its alphabet-independent capability.  相似文献   

14.
Huang M  Ma Y  Wan J  Zhang H  Wang Y  Chen Y  Yoo C  Guo W 《Bioresource technology》2011,102(19):8907-8913
A hybrid artificial neural network - genetic algorithm numerical technique was successfully developed to model, and to simulate the biodegradation process of di-n-butyl phthalate in an anaerobic/anoxic/oxic (AAO) system. The fate of DnBP was investigated, and a removal kinetic model including sorption and biodegradation was formulated. To correlate the experimental data with available models or some modified empirical equations, the steady state model equations describing the biodegradation process have been solved using genetic algorithm (GA) and artificial neural network (ANN) from the water quality characteristic parameters. Compared with the kinetic model, the performance of the GA-ANN for modeling the DnBP was found to be more impressive. The results show that the predicted values well fit measured concentrations, which was also supported by the relatively low RMSE (0.2724), MAPE (3.6137) and MSE (0.0742)and very high R (0.9859) values, and which illustrates the GA-ANN model predicting effluent DnBP more accurately than the mechanism model forecasting.  相似文献   

15.
In order to establish novel hybrid neural discriminant model, linear discriminant analysis (LDA) was used at the first stage to evaluate the contribution of sequence parameters in determining the protein structural class. An in-house program generated parameters including single amino acid and all dipeptide composition frequencies for 498 proteins came from Zhou [An intriguing controversy over protein structural class prediction, J. Protein Chem. 17(8) (1998) 729-738]. Then, 127 statistically effective parameters were selected by stepwise LDA and were used as inputs of the artificial neural networks (ANNs) to build a two-stage hybrid predictor. In this study, self-consistency and jackknife tests were used to verify the performance of this hybrid model, and were compared with some of prior works. The results showed that our two-stage hybrid neural discriminant model approach is very promising and may play a complementary role to the existing powerful approaches.  相似文献   

16.
Linear regression (LR) has been used to predict the amino acid (AA) profiles of feed ingredients, given proximate analysis (PA) input. Artificial neural networks (ANN) have also been trained to predict AA levels, generally with better results. Past projects have indicated that ANN more effectively identified the complex relationship between nutrients and feed ingredients than did LR. It was shown that the maximum R2 value, a measurement of the amount of variability explained by the model, was highest when a general regression neural network (GRNN) with iterative calibration (GRNNIT) was used to train the ANN. This was in comparison to LR, Ward backpropagation (WBP) or 3-layer backpropagation (3BP) architectures. The current study investigated the potential of a new, advanced method of calibration using the genetic algorithm (GA) to optimize GRNN smoothing values. Calibration of an ANN allows the neural network to generalize well and therefore provide good results on new data. A GRNN architecture (NeuroShell 2® Software) with GA calibration (GRNNGA) was used to train an ANN to predict AA levels in maize, soya bean meal (SBM), meat and bone meal, fish meal and wheat, based on proximate analysis input. Within the GRNNGA architecture, ANN were trained with either an Euclidean or City Block distance metric and a (0,1), (−1,1), (logistic) or (tanh) input scale. Predictive performance was judged on the basis of the maximum R2 value. In general, maximum R2 values were higher when the GA calibration was used in comparison to LR. For example, the highest methionine (MET) R2 value for SBM was 0.54 (LR), 0.81 (3BP), 0.87 (WBP), 0.92 (GRNNIT) and 0.98 (GRNNGA). Genetic algorithm calibration of GRNN architecture led to further improvements in ANN performance for AA level predictions in most of the cases studied. Exceptions were the TSAA level in SBM (0.94 with GRNNIT vs. 0.90 with GRNNGA) and the TRY level in maize (0.88 with GRNNIT vs. 0.61 with GRNNGA).  相似文献   

17.
Hayat M  Khan A  Yeasin M 《Amino acids》2012,42(6):2447-2460
Knowledge of the types of membrane protein provides useful clues in deducing the functions of uncharacterized membrane proteins. An automatic method for efficiently identifying uncharacterized proteins is thus highly desirable. In this work, we have developed a novel method for predicting membrane protein types by exploiting the discrimination capability of the difference in amino acid composition at the N and C terminus through split amino acid composition (SAAC). We also show that the ensemble classification can better exploit this discriminating capability of SAAC. In this study, membrane protein types are classified using three feature extraction and several classification strategies. An ensemble classifier Mem-EnsSAAC is then developed using the best feature extraction strategy. Pseudo amino acid (PseAA) composition, discrete wavelet analysis (DWT), SAAC, and a hybrid model are employed for feature extraction. The nearest neighbor, probabilistic neural network, support vector machine, random forest, and Adaboost are used as individual classifiers. The predicted results of the individual learners are combined using genetic algorithm to form an ensemble classifier, Mem-EnsSAAC yielding an accuracy of 92.4 and 92.2% for the Jackknife and independent dataset test, respectively. Performance measures such as MCC, sensitivity, specificity, F-measure, and Q-statistics show that SAAC-based prediction yields significantly higher performance compared to PseAA- and DWT-based systems, and is also the best reported so far. The proposed Mem-EnsSAAC is able to predict the membrane protein types with high accuracy and consequently, can be very helpful in drug discovery. It can be accessed at http://111.68.99.218/membrane.  相似文献   

18.
《Genomics》2020,112(6):4666-4674
Natural antioxidant proteins are mainly found in plants and animals, which interact to eliminate excessive free radicals and protect cells and DNA from damage, prevent and treat some diseases. Therefore, accurate identification of antioxidant proteins is important for the development of new drugs and research of related diseases. This article proposes novel method based on the combination of random forest and hybrid features that can accurately predict antioxidant proteins. Four single feature extraction methods (188D, profile-based Auto-cross covariance (ACC-PSSM), N-gram, and g-gap) and hybrid feature representation methods were used to feature extraction. Three feature selection methods (MRMD, t-SNE, and the optimal feature set selection) were adopted to determine the optimal features. The new hybrid feature vectors derived by combining 188D with the other three features all have indicators ranging from 0.9550 to 0.9990. The novel method showed better performance compared with the other methods.  相似文献   

19.
Xia XY  Ge M  Wang ZX  Pan XM 《PloS one》2012,7(6):e37653
Because of the increasing gap between the data from sequencing and structural genomics, the accurate prediction of the structural class of a protein domain solely from the primary sequence has remained a challenging problem in structural biology. Traditional sequence-based predictors generally select several sequence features and then feed them directly into a classification program to identify the structural class. The current best sequence-based predictor achieved an overall accuracy of 74.1% when tested on a widely used, non-homologous benchmark dataset 25PDB. In the present work, we built a multiple linear regression (MLR) model to convert the 440-dimensional (440D) sequence feature vector extracted from the Position Specific Scoring Matrix (PSSM) of a protein domain to a 4-dimensinal (4D) structural feature vector, which could then be used to predict the four major structural classes. We performed 10-fold cross-validation and jackknife tests of the method on a large non-homologous dataset containing 8,244 domains distributed among the four major classes. The performance of our approach outperformed all of the existing sequence-based methods and had an overall accuracy of 83.1%, which is even higher than the results of those predicted secondary structure-based methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号