首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The need for methods to identify disease biomarkers is underscored by the survival-rate of patients diagnosed at early stages of cancer progression. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) is a novel approach to biomarker discovery that combines two powerful techniques: chromatography and mass spectrometry. One of the key features of SELDI-TOF MS is its ability to provide a rapid protein expression profile from a variety of biological and clinical samples. It has been used for biomarker identification as well as the study of protein-protein, and protein-DNA interaction. The versatility of SELDI-TOF MS has allowed its use in projects ranging from the identification of potential diagnostic markers for prostate, bladder, breast, and ovarian cancers and Alzheimer's disease, to the study of biomolecular interactions and the characterization of posttranslational modifications. In this minireview we discuss the application of SELDI-TOF MS to protein biomarker discovery and profiling.  相似文献   

2.
Proteomic profiling with SELDI-TOF MS has facilitated the discovery of disease-specific protein profiles. However, multicenter studies are often hindered by the logistics required for prompt deep-freezing of samples in liquid nitrogen or dry ice within the clinic setting prior to shipping. We report high concordance between MS profiles within sets of quadruplicate split urine and serum samples deep-frozen at 0, 2, 6, and 24 h after sample collection. Gage R&R results confirm that deep-freezing times are not a statistically significant source of SELDI-TOF MS variability for either blood or urine.  相似文献   

3.
SELDI-TOF MS is a mass spectrometric technique which has been extensively used for biomarker discovery. In this study, we show that in-source decay is an important source for the generation of additional spectral peaks with this technique, both for pure proteins and proteins in serum samples. Thus, SELDI-TOF MS could be used to gain sequence information from proteins, but the results also question the uncritical use of SELDI-TOF MS as a general method for the detection of biomarkers.  相似文献   

4.
SELDI-TOF MS assisted the discovery of the chemokine CCL18/PARC as plasma biomarker for pathological storage cells in Gaucher disease patients. Prognostic elevation of CCL18 in blood of Gaucher patients has been confirmed by ELISA. Given its low molecular mass, positive charge, and relatively high abundance, CCL18 seems a particular attractive protein for SELDI-TOF based quantitation. Therefore, we determined CCL18 levels in plasma using SELDI-TOF MS and ELISA, in parallel. CCL18 levels in some blood samples were significantly underestimated when determined by SELDI-TOF MS. Spiking of recombinant CCL18 indicated that its detection by SELDI-TOF MS is strongly determined by the nature of the sample, even markedly varying between samples obtained from one donor at different time points. Independent of the total CCL18 concentration in blood only 1-10% of the chemokine bound to the ProteinChip Array. Even when comparable amounts of CCL18 from distinct samples were bound to the ProteinChip Array, diverse peak intensities could be observed. Thus, limited binding capacity and sample-dependent suppression of CCL18 ionization contribute significantly to the final peak intensity. In conclusion, SELDI-TOF MS offers no reliable procedure to quantitatively monitor CCL18 levels in blood and thus cannot be applied in evaluation of disease status of Gaucher patients.  相似文献   

5.

Background  

Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) is a powerful tool for rapidly generating high-throughput protein profiles from a large number of samples. However, the events that occur between the first and last sample run are likely to introduce technical variation in the results.  相似文献   

6.
We have employed SELDI-TOF MS to screen for differentially expressed proteins in plasma samples from 27 patients with idiopathic pulmonary arterial hypertension (IPAH) and 26 healthy controls. One ion (m/z approximately 8600) that was found to be elevated in IPAH was validated by SELDI-TOF MS analysis of a second and separate set of plasma samples comprising 30 IPAH patients and 19 controls. The m/z 8600 was purified from plasma by sequential ion exchange and reverse-phase chromatographies and SDS-PAGE. It was identified, following trypsin digestion, by MS peptide analysis as the complement component, complement 4a (C4a) des Arg. Plasma levels of C4a des Arg measured by ELISA confirmed that the levels were significantly higher (p < 0.0001) in IPAH patients (2.12 +/- 0.27 microg/mL) compared with normal controls (0.53 +/- 0.05 microg/mL). A cut-off level of 0.6 microg/mL correctly classified 92% of IPAH patients and 80% of controls. Further studies will be needed to determine its performance as a diagnostic biomarker, whether used alone or in combination with other biomarkers. Nevertheless, this study demonstrates that putative biomarkers characteristic of IPAH can be identified using a conjoint SELDI-TOF MS - proteomics approach.  相似文献   

7.
Recent development of proteomic array technology, including protein profiling coupling ProteinChip array with surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF/MS), provides a potentially powerful tool for discovery of new biomarkers by comparison of its profiles according to patient phenotypes. We used this approach to identify the host factors associated with treatment response in patients with chronic hepatitis C (CHC) receiving a 48-wk course of pegylated interferon (PEG-IFN) alpha 2b plus ribavirin (RBV). Protein profiles of pretreatment serum samples from 32 patients with genotype 1b and high viral load were conducted by SELDI-TOF/MS by using the three different ProteinChip arrays (CM10, Q10, IMAC30). Proteins showed significantly different peak intensities between sustained virological responders (SVRs), and non-SVRs were identified by chromatography, SDS-PAGE, TOF/MS and tandem mass spectrometry (MS/MS) assay. Eleven peak intensities were significantly different between SVRs and non-SVRs. The three SVR-increased peaks could be identified as two apolipoprotein (Apo) fragments and albumin and, among the eight non-SVR-increased proteins, four peaks identified as two iron-related and two fibrogenesis-related protein fragments, respectively. Multivariate analysis showed that the serum ferritin and three peak intensity values (Apo A1, hemopexin and transferrin) were independent variables associated with SVRs, and the area under the receiver operating characteristic (ROC) curves for SVR prediction by using the Apo A1/hemopexin and hemopexin/transferrin were 0.964 and 0.936. In conclusion, pretreatment serum protein profiling by SELDI-TOF/MS is variable for identification of response-related host factors, which are useful for treatment efficacy prediction in CHC receiving PEG-IFN plus RBV. Our data also may help us understand the mechanism for treatment resistance and development of more effective antiviral therapy targeted toward the modulation of lipogenesis or iron homeostasis in CHC patients.  相似文献   

8.
Chinese hamster ovary (CHO) cells are the most commonly used host cell line for the production of recombinant biopharmaceuticals. These biopharmaceuticals are typically secreted from CHO cells and purified from harvested cell culture media. The purpose of this study was to investigate changes in the secreted proteome of CHO cells over the various stages of the growth cycle using Surface Enhanced Laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS). Conditioned media samples were collected each day over a 6 day growth period from CHO-K1 cells grown in low serum (0.5% FBS) conditions in monolayer culture. Samples were profiled on a number of ProteinChip arrays with different chromatographic surfaces. From this study, 24 proteins were found to be differentially regulated at different phases of the growth cycle in CHO-K1 cells, when profiled on two chromatographic surfaces, Q10 (anionic) and IMAC30 (metal affinity) ProteinChip arrays.  相似文献   

9.
Systemic-onset juvenile idiopathic arthritis (SJIA) is a disease of unknown etiology with an unpredictable response to treatment. We examined two groups of patients to determine whether there are serum protein profiles reflective of active disease and predictive of response to therapy. The first group (n = 8) responded to conventional therapy. The second group (n = 15) responded to an experimental antibody to the IL-6 receptor (MRA). Paired sera from each patient were analyzed before and after treatment, using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). Despite the small number of patients, highly significant and consistent differences were observed before and after response to therapy in all patients. Of 282 spectral peaks identified, 23 had mean signal intensities significantly different (P < 0.001) before treatment and after response to treatment. The majority of these differences were observed regardless of whether patients responded to conventional therapy or to MRA. These peaks represent potential biomarkers of active disease. One such peak was identified as serum amyloid A, a known acute-phase reactant in SJIA, validating the SELDI-TOF MS platform as a useful technology in this context. Finally, profiles from serum samples obtained at the time of active disease were compared between the two patient groups. Nine peaks had mean signal intensities significantly different (P < 0.001) between active disease in patients who responded to conventional therapy and in patients who failed to respond, suggesting a possible profile predictive of response. Collectively, these data demonstrate the presence of serum proteomic profiles in SJIA that are reflective of active disease and suggest the feasibility of using the SELDI-TOF MS platform used as a tool for proteomic profiling and discovery of novel biomarkers in autoimmune diseases.  相似文献   

10.
ABSTRACT: BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine diseases worldwide. Despite its relevance, serum biomarkers associated with early-onset viral infection, when clinical signs are not detectable and the disease is characterized by a weak anti-viral response and persistent infection, have not yet been identified. Surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS) is a reproducible, accurate, and simple method for the identification of biomarker proteins related to disease in serum. This work describes the SELDI-TOF MS analyses of sera of 60 PRRSV-positive and 60 PRRSV-negative, as measured by PCR, asymptomatic Large White piglets at weaning. Sera with comparable and low content of hemoglobin (< 4.52 ug/mL) were fractionated in 6 different fractions by anion-exchange chromatography and protein profiles in the mass range 1-200 kDa were obtained with the CM10, IMAC30, and H50 surfaces. RESULTS: A total of 200 significant peaks (p < 0.05) were identified in the initial discovery phase of the study and 47 of them were confirmed in the validation phase. The majority of peaks (42) were up-regulated in PRRSV-positive piglets, while 5 were down-regulated. A panel of 14 discriminatory peaks identified in fraction 1 (pH=9), on the surface CM10, and acquired at low focus mass provided a serum protein profile diagnostic pattern that enabled to discriminate between PRRSV-positive and -negative piglets with a sensitivity and specificity of 77% and 73%, respectively. CONCLUSIONS: SELDI-TOF MS profiling of sera from PRRSV-positive and PRRSV-negative asymptomatic piglets provided a proteomic signature with large scale diagnostic potential for early identification of PRRSV infection in weaning piglets. Furthermore, SELDI-TOF protein markers represent a refined phenotype of PRRSV infection that might be useful for whole genome association studies.  相似文献   

11.
A proteomic strategy based upon the integrated use of SELDI-TOF/MS, 2-DE and MALDI-TOF/MS has been used to identify a panel of fast muscle protein markers: MLC1F, MLC3F, fast troponin C (STNC) and slow muscle markers: MLC1SB and MLC2v. MLC3F, MLC1F and STNC were virtually absent in the physiologically pure slow soleus muscle of kyphoscoliotic mutant mice compared to control BDmice, whereas MLC2v increased threefold. A SELDI-TOF/MS peak at 18,012 Da in spectra from strong anionic exchange protein array fractions of fast vastus muscle was confirmed as STNC by its specific depletion from crude extracts of vastus muscle using an anti-TNC mAb. SELDI-TOF/MS also identified MLC2F phosphorylation in crude muscle extracts after treatment with alkaline phosphatase. High probability protein identifications were achieved by SELDI-TOF/MS PMF based upon the resolution of large peptides formed by partial cleavage and high peptide coverage. When the pI from 2-D gels and molecular weight estimations from SELDI-TOF/MS were entered into the TagIdent algorithm, high probability protein identity predictions were obtained that were confirmed later by PMF. We confirm that SELDI-TOF/MS can be integrated with other proteomics techniques for the efficient analysis of protein expression changes and PTMs associated with physiological changes in skeletal muscle.  相似文献   

12.
The characterization of host cell protein (HCP) content during the production of therapeutic recombinant proteins is an important aspect in the drug development process. Despite this, key components of the HCP profile and how this changes with processing has not been fully investigated. Here we have investigated the supernatant HCP profile at different times throughout culture of a null and model GS-CHO monoclonal antibody producing mammalian cell line grown in fed-batch mode. Using 2D-PAGE and LC-MS/MS we identify a number of intracellular proteins (e.g., protein disulfide isomerise; elongation factor 2; calreticulin) that show a significant change in abundance relative to the general increase in HCP concentration observed with progression of culture. Those HCPs that showed a significant change in abundance across the culture above the general increase were dependent on the cell line examined. Further, our data suggests that the majority of HCPs in the supernatant of the cell lines investigated here arise through lysis or breakage of cells, associated with loss in viability, and are not present due to the secretion of protein material from within the cell. SELDI-TOF and principal components analysis were also investigated to enable rapid monitoring of changes in the HCP profile. SELDI-TOF analysis showed the same trends in the HCP profile as observed by 2D-PAGE analysis and highlighted biomarkers that could be used for process monitoring. These data further our understanding of the relationship between the HCP profile and cell viability and may ultimately enable a more directed development of purification strategies and the development of cell lines based upon their HCP profile.  相似文献   

13.
In order to fully understand biological processes it is essential to identify interactions in protein complexes. There are several techniques available to study this type of interactions, such as yeast two-hybrid screens, affinity chromatography, and coimmunoprecipitation. We propose a novel strategy to identify protein-protein interactions, comprised of first detecting the interactions using ProteinChips and SELDI-TOF MS, followed by the isolation of the interacting proteins through affinity beads and RP-HPLC and finally identifying the proteins using nano-LC MS/MS. The advantages of this new strategy are that the primary high-throughput screening of samples can be performed with small amounts of sample, no specific antibody is needed and the proteins represented on the SELDI-TOF MS spectra can be identified with high confidence. Furthermore, the method is faster and less labor-intensive than other current approaches. Using this novel method, we isolated and identified the interactions of two mouse plasma proteins, mannose binding lectin C and properdin, with GlialCAM, a type 1 transmembrane glycoprotein that belongs to the Ig superfamily.  相似文献   

14.
Efficient analysis of bioconjugation reactions is one the most challenging task for optimizing and eventually achieving the reproducible production of large amount of conjugates. In particular, the complexity of some reaction mixtures precludes the use of most of the existing methods, because of the presence of large amounts of contaminants. As an alternative method, we used surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) for monitoring an in vitro enzymatic transglycosylation of N-acetylgalactosamine (GalNAc) residues to a recombinant mucin protein MUC6. For this reaction, catalyzed by the uridine 5'-diphospho-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), we used either a recombinant ppGalNAc-T1 or a mixture of ppGalNAc-Ts contained in MCF7 tumor cell extracts. In the present study, we show that SELDI-TOF MS offers unique advantages over the traditional methodologies. It is a rapid, accurate, sensitive, reproducible, and very convenient analytical method for monitoring the course of a bioconjugation, even in heterogeneous samples such as cell extracts. SELDI-TOF MS proved very useful for optimizing the reaction parameters of the transglycosylation and for achieving the large scale preparation of Tn antigen-glycosylated mucins for antitumor immunotherapy applications.  相似文献   

15.
SELDI-TOF MS has been demonstrated as a powerful tool for biomarker discovery. However, a major disadvantage of SELDI-TOF MS is the lack of direct identification of the discriminatory peaks discovered. We describe a novel experimental identification strategy where peptides/proteins captured to a weak cation exchange ProteinArray surface (CM10) are eluted, and thereafter identified by utilizing a sensitive LC-MS/MS (i.e. LTQ Orbitrap). A mixture of four known proteins was used to test the novel experimental approach described, and all four proteins were successfully identified. Additionally, a biomarker candidate previously discovered in plasma of Atlantic cod (Gadus morhua) by SELDI-TOF MS was identified. Thus, this study indicated that a combination of on-chip elution and a highly sensitive LC-MS/MS system can be an alternative approach to identify biomarker candidates discovered by use of SELDI-TOF MS.  相似文献   

16.
Apoptosis is a key process in the response of tumours to chemotherapeutic agents. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many tumor cells, while sparing most normal cells. Several chemotherapeutic drugs synergize with TRAIL in reducing tumor growth and inducing apoptosis. Because some tumour cells respond poorly to these treatments, biomarkers that predict clinical responsiveness are needed. This study used surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) to identify novel apoptotic markers in TRAIL and etoposide (T+E)-treated MDA-MB-231 and ZR-75-1 breast cancer cells and MCF-10A non-transformed breast cells. T+E induced apoptosis, increasing caspase-3 activity at 4-8h, in all cell lines. Protein profiles revealed two prominent peaks, m/z 10090 and 8560, which decreased significantly during apoptosis. Mass spectrometry sequencing of tryptic peptides identified these proteins as S100A6 (confirmed immunologically) and ubiquitin (confirmed against a purified standard), respectively. Caspase inhibition prevented the decrease in both proteins during T+E-induced apoptosis whereas proteasome inhibition combined with T+E further decreased ubiquitin, possibly by preventing its recycling. Using SELDI-TOF MS we have identified S100A6 and ubiquitin as potential protein markers of apoptosis. Further validation using patient samples is required to confirm their potential utility in monitoring the effectiveness of anti-cancer drugs in inducing tumour cell apoptosis.  相似文献   

17.
Zou J  Hong G  Guo X  Zhang L  Yao C  Wang J  Guo Z 《PloS one》2011,6(10):e26294

Background

There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS) studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached.

Results

In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE) peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR) control approach and that the reproducibility of DE peak detection could thereby be increased.

Conclusions

Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.  相似文献   

18.

Background  

Phosphoproteins play important roles in a vast series of biological processes. Recent proteomic technologies offer the comprehensive analyses of phosphoproteins. Recently, we demonstrated that surface-enhanced laser desorption/ionization time of flight mass (SELDI-TOF MS) would detect phosphoproteins quantitatively, which was a new application of SELDI-TOF MS.  相似文献   

19.

Background

Proteomic profiling is a rapidly developing technology that may enable early disease screening and diagnosis. Surface-enhanced laser desorption ionization–time of flight mass spectrometry (SELDI-TOF MS) has demonstrated promising results in screening and early detection of many diseases. In particular, it has emerged as a high-throughput tool for detection and differentiation of several cancer types. This review aims to appraise published data on the impact of SELDI-TOF MS in breast cancer.

Methods

A systematic literature search between 1965 and 2009 was conducted using the PubMed, EMBASE, and Cochrane Library databases. Studies covering different aspects of breast cancer proteomic profiling using SELDI-TOF MS technology were critically reviewed by researchers and specialists in the field.

Results

Fourteen key studies involving breast cancer biomarker discovery using SELDI-TOF MS proteomic profiling were identified. The studies differed in their inclusion and exclusion criteria, biologic samples, preparation protocols, arrays used, and analytical settings. Taken together, the numerous studies suggest that SELDI-TOF MS methodology may be used as a fast and robust approach to study the breast cancer proteome and enable the analysis of the correlations between proteomic expression patterns and breast cancer.

Conclusion

SELDI-TOF MS is a promising high-throughput technology with potential applications in breast cancer screening, detection, and prognostication. Further studies are needed to resolve current limitations and facilitate clinical utility.  相似文献   

20.
蛋白质芯片SELDI-TOFMS技术的研究进展及其在临床中的应用   总被引:8,自引:0,他引:8  
蛋白质芯片为新一代的蛋白质组研究技术,由美国Ciphergen生物系统公司引进,表面增强激光解吸电离-飞行时间质谱(SELDI-TOFMS)提供一个高通量和高灵敏度的检测平台。投放至今虽短短10来年,但卓越的成果已广为医学科学界重视,尤其在恶性肿瘤的早期诊断、监控和预后研究上。蛋白质是细胞内执行生物功能的最终分子,蛋白质组学研究让人类更深入了解疾病和生命的本源,不断发现的特异性肿瘤标志物更为攻克癌症带来新希望。这里除对表面增强激光解吸电离_飞行时间质谱作较详尽的介绍外,更重点阐述其近年来蛋白质芯片近期的研究进展和在临床中的应用,并就其优劣和发展前景作出评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号