首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragrance development in rice has been reported due to a 8-bp deletion in the exon 7 of badh2 gene located on Chromosome 8S. Multiplex markers targeting the functional InDel polymorphism was earlier reported for genotyping fragrance trait, but the marker was observed to be inconsistent and difficult to use. We have developed a simple, co-dominant, functional marker for fragrance trait, which can be resolved in an agarose gel and validated in Basmati and non-Basmati aromatic rice varieties and in a mapping population segregated for fragrance trait. The marker targets the InDel polymorphism in badh2 gene and amplifies 95 and 103 bp fragments in fragrant and non-fragrant genotypes, respectively. The newly developed marker was highly efficient in discriminating all fragrant and non-fragrant genotypes and showed perfect co-segregation with the trait of fragrance in the mapping population. We recommend the use of this simple, low-cost marker in routine genotyping for fragrance trait in large scale breeding materials and germplasm.  相似文献   

2.
Tillering and panicle branching genes in rice   总被引:1,自引:0,他引:1  
Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks.  相似文献   

3.
The adipocytes synthesize and store triglycerides as lipid droplets surrounded by various proteins and phospholipids at its surface. Recently, the molecular basis of some of the genetic syndromes of lipodystrophies has been elucidated and some of these genetic loci have been found to contribute to lipid droplet formation in adipocytes. The two main types of genetic lipodystrophies are congenital generalized lipodystrophy (CGL) and familial partial lipodystrophy (FPL). So far, three CGL loci: 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), Berardinelli–Seip Congenital Lipodystrophy 2 (BSCL2) and caveolin 1 (CAV1) and four FPL loci: lamin A/C (LMNA), peroxisome proliferator-activated receptor γ (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2) and zinc metalloprotease (ZMPSTE24), have been identified. AGPAT2 plays a critical role in the synthesis of glycerophospholipids and triglycerides required for lipid droplet formation. Another protein, seipin (encoded by BSCL2 gene), has been found to induce lipid droplet fusion. CAV1 is an integral component of caveolae and might contribute towards lipid droplet formation. PPARγ and AKT2 play important role in adipogenesis and lipid synthesis. In this review, we discuss and speculate about the contribution of various lipodystrophy genes and their products in the lipid droplet formation.  相似文献   

4.
When a phenotype of interest is associated with an external/internal covariate, covariate inclusion in quantitative trait loci (QTL) analyses can diminish residual variation and subsequently enhance the ability of QTL detection. In the in vitro synthesis of 2-acetyl-1-pyrroline (2AP), the main fragrance compound in rice, the thermal processing during the Maillard-type reaction between proline and carbohydrate reduction produces a roasted, popcorn-like aroma. Hence, for the first time, we included the proline amino acid, an important precursor of 2AP, as a covariate in our QTL mapping analyses to precisely explore the genetic factors affecting natural variation for rice scent. Consequently, two QTLs were traced on chromosomes 4 and 8. They explained from 20% to 49% of the total aroma phenotypic variance. Additionally, by saturating the interval harboring the major QTL using gene-based primers, a putative allele of fgr (major genetic determinant of fragrance) was mapped in the QTL on the 8th chromosome in the interval RM223-SCU015RM (1.63 cM). These loci supported previous studies of different accessions. Such QTLs can be widely used by breeders in crop improvement programs and for further fine mapping. Moreover, no previous studies and findings were found on simultaneous assessment of the relationship among 2AP, proline and fragrance QTLs. Therefore, our findings can help further our understanding of the metabolomic and genetic basis of 2AP biosynthesis in aromatic rice.  相似文献   

5.
Rice blast disease is a major constraint for rice breeding. Nevertheless, the genetic basis of resistance remains poorly understood for most rice varieties, and new resistance genes remain to be identified. We identified the resistance gene corresponding to the cloned avirulence gene ACE1 using pairs of isogenic strains of Magnaporthe grisea differing only by their ACE1 allele. This resistance gene was mapped on the short arm of rice chromosome 8 using progenies from the crosses IR64 (resistant) × Azucena (susceptible) and Azucena × Bala (resistant). The isogenic strains also permitted the detection of this resistance gene in several rice varieties, including the differential isogenic line C101LAC. Allelism tests permitted us to distinguish this gene from two other resistance genes [Pi11 and Pi-29(t)] that are present on the short arm of chromosome 8. Segregation analysis in F2 populations was in agreement with the existence of a single dominant gene, designated as Pi33. Finally, Pi33 was finely mapped between two molecular markers of the rice genetic map that are separated by a distance of 1.6 cM. Detection of Pi33 in different semi-dwarf indica varieties indicated that this gene could originate from either one or a few varieties.Communicated by D.J. Mackill  相似文献   

6.
Molecular biology has provided parasitologists with a fantastic variety of techniques that have had a major impact on research into parasites and parasitism. Molecular tools have revealed the extent and nature of genetic diversity in parasites and this information has made a significant contribution to studies on the population genetics and evolutionary biology of parasites. Similarly, epidemiology has benefited enormously from the application of molecular tools in terms of studying parasite life cycles and transmission, and in the development of specific and sensitive methods for diagnosis and surveillance. However, the theme I wish to develop in this paper is concerned with the contribution molecular tools have made to parasite taxonomy and systematics, and in particular, the fact that in many cases molecular tools are validating the proposals made many years ago by taxonomists and biologists which were discounted or not fully accepted at the time. To do this I have chosen four examples (Echinococcus, Entamoeba, Giardia, Cryptosporidium) where recent research involving molecular characterisation has confirmed observations made many years ago and has resulted in a need to revise the taxonomy of different groups of parasites.  相似文献   

7.
The recessive fgr gene on chromosome 8 is associated with rice fragrance. It has been reported that this gene is a non-functional badh2 allele and that the functional Badh2 allele encoding putative betaine aldehyde dehydrogenase (BADH2) could render rice non-fragrant. Here we report the discovery of a new badh2 allele and the development of functional markers for the badh2 locus. A total of 24 fragrant and ten non-fragrant rice varieties were studied and sequenced for their Badh2/badh2 loci. Of the 24 fragrant rice varieties, 12 were found to have the known badh2 allele (badh2-E7), which has an 8-bp deletion and three single nucleotide polymorphisms (SNPs) in exon 7; the others had a novel null badh2 allele (badh2-E2), which has a sequence identical to that of the Badh2 allele in exon 7, but with a 7-bp deletion in exon 2. Both null badh2 alleles are responsible for rice fragrance. Based on sequence divergence amongst the functional Badh2 and two null badh2 alleles, we developed functional markers which can be easily used to distinguish non-fragrant from fragrant rice and to differentiate between two kinds of fragrant rice. These functional markers will find their usefulness in breeding for fragrant rice varieties via marker-assisted selection. Weiwei Shi and Yi Yang contributed equally to this work.  相似文献   

8.
Summary Photoperiod-sensitive rice (Oryza sativa L.) cultivars are widely grown in rainfed lowland areas with unfavorable water regimes. A molecular marker for the trait would be useful in genetic and physiological studies and in developing improved photoperiod-sensitive cultivars. Previous genetic studies identified a major gene for photoperiod sensitivity on chromosome 6. We have tested an isozyme marker and several RFLP probes mapping to chromosome 6 in an attempt to identify marker(s) tightly linked to photoperiod sensitivity in tropical rice cultivars. We report here that the isozyme gene Pgi-2 is linked (23.2±4.7 cM) to the photoperiod-sensitivity gene in the cultivar GEB-24. Although association of duration with Pgi-2 alleles can be used to detect segregation of the photoperiod sensitivity gene in crosses, it will probably not be useful as a marker in selection because of its loose linkage. In contrast, a gene for photoperiod sensitivity in the cultivar Puang Rai 2 was found to be closely linked to the rice genomic clone RG64. Among 15 F3 lines homozygous for photoperiod insensitivity, no recombinants were detected with RG64. This clone is thus an excellent probe to follow segregation of the major photoperiod-sensitivity gene in rice crosses.  相似文献   

9.
10.
11.
Taxonomic characterization was performed on the putative N2-fixing microbiota associated with the coral species Mussismilia hispida, and with its sympatric species Palythoa caribaeorum, P. variabilis, and Zoanthus solanderi, off the coast of São Sebastião (São Paulo State, Brazil). The 95 isolates belonged to the Gammaproteobacteria according to the 16S rDNA gene sequences. In order to identify the isolates unambiguously, pyrH gene sequencing was carried out. The majority of the isolates (n=76) fell within the Vibrio core group, with the highest gene sequence similarity being towards Vibrio harveyi and Vibrio alginolyticus. Nineteen representative isolates belonging to V. harveyi (n=7), V. alginolyticus (n=8), V. campbellii (n=3), and V. parahaemolyticus (n=1) were capable of growing six successive times in nitrogen-free medium and some of them showed strong nitrogenase activity by means of the acetylene reduction assay (ARA). It was concluded that nitrogen fixation is a common phenotypic trait among Vibrio species of the core group. The fact that different Vibrio species can fix N2 might explain why they are so abundant in the mucus of different coral species.  相似文献   

12.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

13.
A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.  相似文献   

14.
水稻粒长QTL定位与主效基因的遗传分析   总被引:1,自引:0,他引:1  
该研究利用短粒普通野生稻矮杆突变体和长粒栽培稻品种KJ01组配杂交组合F_1,构建分离群体F_2;并对该群体粒长进行性状遗传分析,利用平均分布于水稻的12条染色体上的132对多态分子标记对该群体进行QTL定位及主效QTLs遗传分析,为进一步克隆新的主效粒长基因奠定基础,并为水稻粒形育种提供理论依据。结果表明:(1)所构建的水稻杂交组合分离群体F_2的粒长性状为多基因控制的数量性状。(2)对543株F_2分离群体进行QTL连锁分析,构建了控制水稻粒长的连锁遗传图谱,总长为1 713.94 cM,共检测出24个QTLs,只有3个表现为加性遗传效应,其余位点均表现为遗传负效应。(3)检测到的3个主效QTLs分别位于3号染色体的分子标记PSM379~RID24455、RID24455~RM15689和RM571~RM16238之间,且三者对表型的贡献率分别为54.85%、31.02%和7.62%。(4)在标记PSM379~RID24455之间已克隆到的粒长基因为该研究新发现的主效QTL位点。  相似文献   

15.
The emerging invasive fungal pathogen Aspergillus fumigatus causes very serious infections among immunocompromised patient populations. While the genome of this pathogen has been sequenced, a major barrier to better understanding the complex biology of this eukaryotic organism is a lack of tools for efficient genetic manipulation. To improve upon this, we have generated a new gene deletion system for A. fumigatus using yeast recombinational cloning and Agrobacterium tumefaciens mediated transformation (ATMT) employing a recyclable marker system. This system reduced the time for generating a gene deletion strain in our hands by two-thirds (12 weeks to 3 weeks) using minimal human labor, and we demonstrate that it can be used to efficiently generate multiple gene deletions within a single strain.  相似文献   

16.
Globalization has provided opportunities for parasites/pathogens to cross geographic boundaries and expand to new hosts. Recent studies showed that Nosema ceranae, originally considered a microsporidian parasite of Eastern honey bees, Apis cerana, is a disease agent of nosemosis in European honey bees, Apis mellifera, along with the resident species, Nosema apis. Further studies indicated that disease caused by N. ceranae in European honey bees is far more prevalent than that caused by N. apis. In order to gain more insight into the epidemiology of Nosema parasitism in honey bees, we conducted studies to investigate infection of Nosema in its original host, Eastern honey bees, using conventional PCR and duplex real time quantitative PCR methods. Our results showed that A. cerana was infected not only with N. ceranae as previously reported [Fries, I., Feng, F., Silva, A.D., Slemenda, S.B., Pieniazek, N.J., 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32, 356-365], but also with N. apis. Both microsporidia produced single and mixed infections. Overall and at each location alone, the prevalence of N. ceranae was higher than that of N. apis. In all cases of mixed infections, the number of N. ceranae gene copies (corresponding to the parasite load) significantly out numbered those of N. apis. Phylogenetic analysis based on a variable region of small subunit ribosomal RNA (SSUrRNA) showed four distinct clades of N. apis and five clades of N. ceranae and that geographical distance does not appear to influence the genetic diversity of Nosema populations. The results from this study demonstrated that duplex real-time qPCR assay developed in this study is a valuable tool for quantitative measurement of Nosema and can be used to monitor the progression of microsprodian infections of honey bees in a timely and cost efficient manner.  相似文献   

17.
Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C. elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2 in the biology and development of H. contortus, particularly in the transition to parasitism.  相似文献   

18.
19.

Background and Aims

The Asian genus Vigna, to which four cultivated species (rice bean, azuki bean, mung bean and black gram) belong, is suitable for comparative genomics. The aims were to construct a genetic linkage map of rice bean, to identify the genomic regions associated with domestication in rice bean, and to compare these regions with those in azuki bean.

Methods

A genetic linkage map was constructed by using simple sequence repeat and amplified fragment length polymorphism markers in the BC1F1 population derived from a cross between cultivated and wild rice bean. Using this map, 31 domestication-related traits were dissected into quantitative trait loci (QTLs). The genetic linkage map and QTLs of rice bean were compared with those of azuki bean.

Key Results

A total of 326 markers converged into 11 linkage groups (LGs), corresponding to the haploid number of rice bean chromosomes. The domestication-related traits in rice bean associated with a few major QTLs distributed as clusters on LGs 2, 4 and 7. A high level of co-linearity in marker order between the rice bean and azuki bean linkage maps was observed. Major QTLs in rice bean were found on LG4, whereas major QTLs in azuki bean were found on LG9.

Conclusions

This is the first report of a genetic linkage map and QTLs for domestication-related traits in rice bean. The inheritance of domestication-related traits was so simple that a few major QTLs explained the phenotypic variation between cultivated and wild rice bean. The high level of genomic synteny between rice bean and azuki bean facilitates QTL comparison between species. These results provide a genetic foundation for improvement of rice bean; interchange of major QTLs between rice bean and azuki bean might be useful for broadening the genetic variation of both species.  相似文献   

20.
The regulation of gene expression is an important determinant of organismal phenotype and evolution. However, the widespread recognition of this fact occurred long after the synthesis of evolution and genetics. Here, we give a brief sketch of thoughts regarding gene regulation in the history of evolution and genetics. We then review the development of genome-wide studies of gene regulatory variation in the context of the location and mode of action of the causative genetic changes. In particular, we review mapping of the genetic basis of expression variation through expression quantitative trait locus studies and measuring the cis/trans component of expression variation in allele-specific expression studies. We conclude by proposing a systematic integration of ideas that combines global mapping studies, cis/trans tests and modern population genetics methodologies, in order to directly estimate the forces acting on regulatory variation within and between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号