首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Apoptotic protease-activating factor-1 (Apaf-1), a key regulator of the mitochondrial apoptosis pathway, consists of three functional regions: (i) an N-terminal caspase recruitment domain (CARD) that can bind to procaspase-9, (ii) a CED-4-like region enabling self-oligomerization, and (iii) a regulatory C terminus with WD-40 repeats masking the CARD and CED-4 region. During apoptosis, cytochrome c and dATP can relieve the inhibitory action of the WD-40 repeats and thus enable the oligomerization of Apaf-1 and the subsequent recruitment and activation of procaspase-9. Here, we report that different apoptotic stimuli induced the caspase-mediated cleavage of Apaf-1 into an 84-kDa fragment. The same Apaf-1 fragment was obtained in vitro by incubation of cell lysates with either cytochrome c/dATP or caspase-3 but not with caspase-6 or caspase-8. Apaf-1 was cleaved at the N terminus, leading to the removal of its CARD H1 helix. An additional cleavage site was located within the WD-40 repeats and enabled the oligomerization of p84 into a approximately 440-kDa Apaf-1 multimer even in the absence of cytochrome c. Due to the partial loss of its CARD, the p84 multimer was devoid of caspase-9 or other caspase activity. Thus, our data indicate that Apaf-1 cleavage causes the release of caspases from the apoptosome in the course of apoptosis.  相似文献   

2.
To elucidate the mechanism of activation of procaspase-9 by Apaf-1, we produced recombinant full-length Apaf-1 and purified it to complete homogeneity. Here we show using gel filtration that full-length Apaf-1 exists as a monomer that can be transformed to an oligomeric complex made of at least eight subunits after binding to cytochrome c and dATP. Apaf-1 binds to cytochrome c in the absence of dATP but does not form the oligomeric complex. However, when dATP is added to the cytochrome c-bound Apaf-1 complex, complete oligomerization occurs, suggesting that oligomerization is driven by hydrolysis of dATP. This was supported by the observation that ATP, but not the nonhydrolyzable adenosine 5'-O-(thiotriphosphate), can induce oligomerization of the Apaf-1-cytochrome c complex. Like the spontaneously oligomerizing Apaf-530, which lacks its WD-40 domain, the oligomeric full-length Apaf-1-cytochrome c complex can bind and process procaspase-9 in the absence of additional dATP or cytochrome c. However, unlike the truncated Apaf-530 complex, the full-length Apaf-1 complex can release the mature caspase-9 after processing. Once released, mature caspase-9 can process procaspase-3, setting into motion the caspase cascade. These observations indicate that cytochrome c and dATP are required for oligomerization of Apaf-1 and suggest that the WD-40 domain plays an important role in oligomerization of full-length Apaf-1 and the release of mature caspase-9 from the Apaf-1 oligomeric complex.  相似文献   

3.
Apaf-1 is an important apoptotic signaling molecule that can activate procaspase-9 in a cytochrome c/dATP-dependent fashion. Alternative splicing can create an NH(2)-terminal 11-amino acid insert between the caspase recruitment domain and ATPase domains or an additional COOH-terminal WD-40 repeat. Recently, several Apaf-1 isoforms have been identified in tumor cell lines, but their expression in tissues and ability to activate procaspase-9 remain poorly characterized. We performed analysis of normal tissue mRNAs to examine the relative expression of the Apaf-1 forms and identified Apaf-1XL, containing both the NH(2)-terminal and COOH-terminal inserts, as the major RNA form expressed in all tissues tested. We also identified another expressed isoform, Apaf-1LN, containing the NH(2)-terminal insert, but lacking the additional WD-40 repeat. Functional analysis of all identified Apaf-1 isoforms demonstrated that only those with the additional WD-40 repeat activated procaspase 9 in vitro in response to cytochrome c and dATP, while the NH(2)-terminal insert was not required for this activity. Consistent with this result, in vitro binding assays demonstrated that the additional WD-40 repeat was also required for binding of cytochrome c, subsequent Apaf-1 self-association, binding to procaspase-9, and formation of active Apaf-1 oligomers. These experiments demonstrate the expression of multiple Apaf-1 isoforms and show that only those containing the additional WD-40 repeat bind and activate procaspase-9 in response to cytochrome c and dATP.  相似文献   

4.
We report here the biochemical analysis of the reconstituted de novo procaspase-9 activation using highly purified cytochrome c, recombinant apoptotic protease-activating factor-1 (Apaf-1), and recombinant procaspase-9. Using a nucleotide binding assay, we found that Apaf-1 alone bound dATP poorly and the nucleotide binding to Apaf-1 was significantly stimulated by cytochrome c. The binding of dATP to Apaf-1 induces the formation of a multimeric Apaf-1. cytochrome c complex, apoptosome. Procaspase-9 also synergistically promotes dATP binding to Apaf-1 in a cytochrome c-dependent manner. The dATP bound to apoptosome remained as dATP, not dADP. A nonhydrolyzable ATP analog, ADPCP (beta,gamma-methylene adenosine 5'-triphosphate), was able to support apoptosome formation and caspase activation in place of dATP or ATP. These data indicate that the key event in Apaf-1-mediated caspase-9 activation is cytochrome c-induced dATP binding to Apaf-1.  相似文献   

5.
Apoptotic protease activating factor-1 (Apaf-1) has been identified as a proximal activator of caspase-9 in cell death pathways that trigger mitochondrial damage and cytochrome c release. The mechanism of Apaf-1 action is unclear but has been proposed to involve the clustering of caspase-9 molecules, thereby facilitating autoprocessing of adjacent zymogens. Here we show that Apaf-1 can dimerize via the CED-4 homologous and linker domains of the molecule providing a means by which Apaf-1 can promote the clustering of caspase-9 and facilitate its activation. Apaf-1 dimerization was repressed by the C-terminal half of the molecule, which contains multiple WD-40 repeats, but this repression was overcome in the presence of cytochrome c and dATP. Removal of the WD-40 repeat region resulted in a constitutively active Apaf-1 that exhibited greater cytotoxicity in transient transfection assays when compared with full-length Apaf-1. These data suggest a mechanism for Apaf-1 function and reveal an important regulatory role for the WD-40 repeat region.  相似文献   

6.
We report here the reconstitution of the de novo procaspase-9 activation pathway using highly purified cytochrome c, recombinant APAF-1, and recombinant procaspase-9. APAF-1 binds and hydrolyzes ATP or dATP to ADP or dADP, respectively. The hydrolysis of ATP/dATP and the binding of cytochrome c promote APAF-1 oligomerization, forming a large multimeric APAF-1.cytochrome c complex. Such a complex can be isolated using gel filtration chromatography and is by itself sufficient to recruit and activate procaspase-9. The stoichiometric ratio of procaspase-9 to APAF-1 is approximately 1 to 1 in the complex. Once activated, caspase-9 disassociates from the complex and becomes available to cleave and activate downstream caspases such as caspase-3.  相似文献   

7.
Bcr-Abl, activated in chronic myelogenous leukemias, is a potent cell death inhibitor. Previous reports have shown that Bcr-Abl prevents apoptosis through inhibition of mitochondrial cytochrome c release. We report here that Bcr-Abl also inhibits caspase activation after the release of cytochrome c. Bcr-Abl inhibited caspase activation by cytochrome c added to cell-free lysates and prevented apoptosis when cytochrome c was microinjected into intact cells. Bcr-Abl acted posttranslationally to prevent the cytochrome c-induced binding of Apaf-1 to procaspase 9. Although Bcr-Abl prevented interaction of endogenous Apaf-1 with the recombinant prodomain of caspase 9, it did not affect the association of endogenous caspase 9 with the isolated Apaf-1 caspase recruitment domain (CARD) or Apaf-1 lacking WD-40 repeats. These data suggest that Apaf-1 recruitment of caspase 9 is faulty in the presence of Bcr-Abl and that cytochrome c/dATP-induced exposure of the Apaf-1 CARD is likely defective. These data provide a novel locus of Bcr-Abl antiapoptotic action and suggest a distinct mechanism of apoptosomal inhibition.  相似文献   

8.
The intrinsic apoptosis apparatus plays a significant role in generating and amplifying cell death signals. In this study we examined whether there are differences in the expression of its components and in its functioning in non-small cell lung carcinoma (NSCLC) and the lung. We show that NSCLC cell lines express Apaf-1 and procaspase-9 and -3 proteins and that the expression of Apaf-1 and procaspase-3, but not of procaspase-9 and -7, is frequently up-regulated in NSCLC tissues as compared to the lung. NSCLC tissues and lungs and some NSCLC cell lines expressed also caspase-9S(b) and displayed a high caspase-9S(b)/procaspase-9 expression ratio. Procaspase-3 from NSCLCs and lungs was readily processed to caspase-3 by granzyme B or caspase-8, and the granzyme B-generated caspase-3-like activity was significantly higher in tumor tissues and cells than in lungs. By contrast, cytochrome c plus dATP could induce a significant increase of caspase-3-like activity in cytosol only in some NSCLC cell lines and in subsets of studied NSCLC tissues and lungs, while procaspase-3 and -7 were detectably processed only in NSCLC tissues which showed a high (cytochrome c+dATP)-induced caspase-3-like activity. Taken together, the present study provides evidence that the expression of Apaf-1 and procaspase-3 is up-regulated in NSCLCs and indicates that the tumors have a capability to suppress the apoptosome-driven caspase activation in their cytosol.  相似文献   

9.
Apoptosis is a biological process relevant to human disease states that is strongly regulated through protein-protein complex formation. These complexes represent interesting points of chemical intervention for the development of molecules that could modulate cellular apoptosis. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9 that link mitochondria disfunction with activation of the effector caspases and in turn is of interest for the development of apoptotic modulators. In the present study we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library. The active compounds rescued from the library were chemically optimised to obtain molecules that bind to both recombinant and human endogenous Apaf-1 in a cytochrome c-noncompetitive mechanism that inhibits the recruitment of procaspase-9 by the apoptosome. These newly identified Apaf-1 ligands decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.  相似文献   

10.
In the intrinsic death pathway, cytochrome C (CC) released from mitochondria to the cytosol triggers Apaf-1 apoptosome formation and subsequent caspase activation. This process can be recapitulated using recombinant Apaf-1 and CC in the presence of nucleotides ATP or dATP [(d)ATP] or using fresh cytosol and CC without the need of exogenous nucleotides. Surprisingly, we found that stored cytosols failed to support CC-initiated caspase activation. Storage of cytosols at different temperatures led to the loss of all (deoxy)nucleotides including (d)ATP. Addition of (d)ATP to such stored cytosols partially restored CC-initiated caspase activation. Nevertheless, CC could not induce complete caspase-9/3 activation in stored cytosols, even with the addition of (d)ATP, despite robust Apaf-1 oligomerization. The Apaf-1 apoptosome, which functions as a proteolytic-based molecular timer appeared to be defective as auto-processing of recruited procaspase-9 was inhibited. Far Western analysis revealed that procaspase-9 directly interacted with Apaf-1 and this interaction was reduced in the presence of physiological levels of ATP. Co-incubation of recombinant Apaf-1 and procaspase-9 prior to CC and ATP addition inhibited CC-induced caspase activity. These findings suggest that in the absence of nucleotide such as ATP, direct association of procaspase-9 with Apaf-1 leads to defective molecular timer, and thus, inhibits apoptosome-mediated caspase activation. Altogether, our results provide novel insight on nucleotide regulation of apoptosome.  相似文献   

11.
Chereau D  Zou H  Spada AP  Wu JC 《Biochemistry》2005,44(13):4971-4976
ATP or dATP is a required activator of Apaf-1 for formation of the Apoptosome and thereby activation of caspase-9 (Csp9) [Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Cell 90, 405-413]. Here we demonstrate that dATP or ATP may have an additional role in controlling Apaf-1-mediated Csp9 activation. In the presence of cytochrome c (CytC), dATP or ATP binds to Apaf-1 and triggers heptamerization of Apaf-1 leading to the activation of Csp9. At concentrations greater than 1 mM, dATP or ATP also functions as a negative regulator of apoptosis by binding to and inhibiting Csp9. The affinity labeling reagent, 3'-O-(5-fluoro-2,4-dinitrophenyl)-ATP (FDNP-ATP), was used to probe the binding of nucleotides to Csp9. Similar to ATP, but with a much more profound effect, FDNP-ATP binds to the full-length proCsp9 potently, with an IC(50) of approximately 5-11 nM. Neither ATP nor FDNP-ATP exhibits any effect on the prodomain-truncated enzyme DeltaproCsp9 or p18/p10. FDNP-ATP covalently labels proCsp9 with a stoichiometry of 1:1, resulting in DNP-ATP-proCsp9 that is incapable of forming a productive Apoptosome with Apaf-1. Activity assays show that ATP and dATP, but not ADP or AMP, bind to the processed Csp9 p35/p10. This nucleotide binding site might play an important and previously unrecognized role in regulating proCsp9 activation.  相似文献   

12.
由细胞色素C(Cytochrome c,Cyt c)、ATP/dATP、凋亡酶激活因子-1(apoptotic protease activating factor-1,Apaf-1)以及procaspase-9(caspase-9的前体)构成的约700 kDa、具有很强的caspase酶激活活性的大分子蛋白复合物——凋亡体(apoptosome),在哺乳动物线粒体凋亡途径和胚胎发育中至关重要。描述了凋亡体上各因子的结构、功能及其相互关系,线粒体介导的凋亡通路中凋亡体的形成及其调控。  相似文献   

13.
Bao Q  Lu W  Rabinowitz JD  Shi Y 《Molecular cell》2007,25(2):181-192
Apaf-1 plays an essential role in apoptosis. In the presence of cytochrome c and dATP, Apaf-1 assembles into an oligomeric apoptosome, which is responsible for the activation of procaspase-9 and the maintenance of the enzymatic activity of the processed caspase-9. Regulation of apoptosome assembly by other cellular factors is poorly understood. Here we report that physiological concentrations of calcium ion negatively affect the assembly of apoptosome by inhibiting nucleotide exchange in the monomeric, autoinhibited Apaf-1 protein. Consequently, calcium blocks the ability of Apaf-1 to activate caspase-9. These observations suggest an important role of calcium homeostasis on the Apaf-1-dependent apoptotic pathway.  相似文献   

14.
Katoh I  Sato S  Fukunishi N  Yoshida H  Imai T  Kurata S 《Cell research》2008,18(12):1210-1219
To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency, we examined spleen and bone marrow cells from Apaf1(+/+) (+/+) and Apaf1(fog/fog) (fog/fog) mice for initiator caspase-9 activation by cellular stresses. When the mitochondrial inner membrane potential (Deltapsim) was disrupted by staurosporine, +/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis, indicating the lack of apoptosome (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells. However, when a marginal ( approximately 20%) decrease in Deltapsim was caused by hydrogen peroxide (0.1 mM), peroxynitritedonor 3-morpholinosydnonimine (0.1 mM) and UV-C irradiation (20 J/m(2)), both +/+ and fog/fog cells triggered procaspase-9 auto-processing and its downstream cascade activation. Supporting our previous results, procaspase-9 pre-existing in the mitochondria induced its auto-processing before the cytosolic caspase activation regardless of the genotypes. Cellular ATP concentration significantly decreased under the hypoactive Deltapsim condition. Furthermore, we detected accumulation of citrate, a kosmotrope known to facilitate procaspase-9 dimerization, probably due to a feedback control of the Krebs cycle by the electron transfer system. Thus, mitochondrial in situ caspase-9 activation may be caused by the major metabolic reactions in response to physiological stresses, which may represent a mode of Apaf-1-independent apoptosis hypothesized from recent genetic studies.  相似文献   

15.
The cytosolic adaptor protein Apaf-1 is a key player in the intrinsic pathway of apoptosis. Binding of mitochondrially released cytochrome c and of dATP or ATP to Apaf-1 induces the formation of the heptameric apoptosome complex, which in turn activates procaspase-9. We have re-investigated the chain of events leading from monomeric autoinhibited Apaf-1 to the functional apoptosome in vitro. We demonstrate that Apaf-1 does not require energy from nucleotide hydrolysis to eventually form the apoptosome. Despite a low intrinsic hydrolytic activity of the autoinhibited Apaf-1 monomer, nucleotide hydrolysis does not occur at any stage of the process. Rather, mere binding of ATP in concert with the binding of cytochrome c primes Apaf-1 for assembly. Contradicting the current view, there is no strict requirement for an adenine base in the nucleotide. On the basis of our results, we present a new model for the mechanism of apoptosome assembly.  相似文献   

16.
Kim HE  Jiang X  Du F  Wang X 《Molecular cell》2008,30(2):239-247
During apoptosis, cytochrome c is released from mitochondria to the cytosol, where it binds Apaf-1. The Apaf-1/cytochrome c complex then oligomerizes either into heptameric caspase-9-activating apoptosome, which subsequently activates caspase-3 and caspase-7, or bigger inactive aggregates, depending on the availability of nucleotide dATP/ATP. A tumor suppressor protein, PHAPI, enhances caspase-9 activation by promoting apoptosome formation through an unknown mechanism. We report here the identification of cellular apoptosis susceptibility protein (CAS) and heat shock protein 70 (Hsp70) as mediators of PHAPI activity. PHAPI, CAS, and Hsp70 function together to accelerate nucleotide exchange on Apaf-1 and prevent inactive Apaf-1/cytochrome c aggregation. CAS expression is induced by multiple apoptotic stimuli including UV irradiation. Knockdown of CAS by RNA interference (RNAi) in cells attenuates apoptosis induced by UV light and causes endogenous Apaf-1 to form aggregates. These studies indicated that PHAPI, CAS, and Hsp70 play an important regulatory role during apoptosis.  相似文献   

17.
The apoptosome is a large caspase-activating ( approximately 700-1400 kDa) complex, which is assembled from Apaf-1 and caspase-9 when cytochrome c is released during mitochondrial-dependent apoptotic cell death. Apaf-1 the core scaffold protein is approximately 135 kDa and contains CARD (caspase recruitment domain), CED-4, and multiple (13) WD40 repeat domains, which can potentially interact with a variety of unknown regulatory proteins. To identify such proteins we activated THP.1 lysates with dATP/cytochrome c and used sucrose density centrifugation and affinity-based methods to purify the apoptosome for analysis by MALDI-TOF mass spectrometry. First, we used a glutathione S-transferase (GST) fusion protein (GST-casp9(1-130)) containing the CARD domain of caspase-9-(1-130), which binds to the CARD domain of Apaf-1 when it is in the apoptosome and blocks recruitment/activation of caspase-9. This affinity-purified apoptosome complex contained only Apaf-1XL and GST-casp9(1-130), demonstrating that the WD40 and CED-4 domains of Apaf-1 do not stably bind other cytosolic proteins. Next we used a monoclonal antibody to caspase-9 to immunopurify the native active apoptosome complex from cell lysates, containing negligible levels of cytochrome c, second mitochondria-derived activator of caspase (Smac), or Omi/HtrA2. This apoptosome complex exhibited low caspase-processing activity and contained four stably associated proteins, namely Apaf-1, pro-p35/34 forms of caspase-9, pro-p20 forms of caspase-3, X-linked inhibitor of apoptosis (XIAP), and cytochrome c, which was only bound transiently to the complex. However, in lysates containing Smac and Omi/HtrA2, the caspase-processing activity of the purified apoptosome complex increased 6-8-fold and contained only Apaf-1 and the p35/p34-processed subunits of caspase-9. During apoptosis, Smac, Omi/HtrA2, and cytochrome c are released simultaneously from mitochondria, and thus it is likely that the functional apoptosome complex in apoptotic cells consists primarily of Apaf-1 and processed caspase-9.  相似文献   

18.
The release of cytochrome c from mitochondria results in the formation of an Apaf-1-caspase-9 apoptosome and induces the apoptotic protease cascade by activation of procaspase-3. The present studies demonstrate that heat shock protein 90 (Hsp90) forms a cytosolic complex with Apaf-1 and thereby inhibits the formation of the active complex. Immunodepletion of Hsp90 depletes Apaf-1 and thereby inhibits cytochrome c-mediated activation of caspase-9. Addition of purified Apaf-1 to Hsp90-depleted cytosolic extracts restores cytochrome c-mediated activation of procaspase-9. We also show that Hsp90 inhibits cytochrome c-mediated oligomerization of Apaf-1 and thereby activation of procaspase-9. Furthermore, treatment of cells with diverse DNA-damaging agents dissociates the Hsp90-Apaf-1 complex and relieves the inhibition of procaspase-9 activation. These findings provide the first evidence for a negative cytosolic regulator of cytochrome c-dependent apoptosis and for involvement of a chaperone in the caspase cascade.  相似文献   

19.
The apoptosome is an Apaf-1 cytochrome c complex that activates procaspase-9. The three-dimensional structure of the apoptosome has been determined at 27 A resolution, to reveal a wheel-like particle with 7-fold symmetry. Molecular modeling was used to identify the caspase recruitment and WD40 domains within the apoptosome and to infer likely positions of the CED4 homology motif and cytochrome c. This analysis suggests a plausible role for cytochrome c in apoptosome assembly. In a subsequent structure, a noncleavable mutant of procaspase-9 was localized to the central region of the apoptosome. This complex promotes the efficient activation of procaspase-3. Therefore, the cleavage of procaspase-9 is not required to form an active cell death complex.  相似文献   

20.
MCF-7 cells lack caspase-3 but undergo mitochondrial-dependent apoptosis via caspase-7 activation. It is assumed that the Apaf-1-caspase-9 apoptosome processes caspase-7 in an analogous manner to that described for caspase-3. However, this has not been validated experimentally, and we have now characterized the caspase-7 activating apoptosome complex in MCF-7 cell lysates activated with dATP/cytochrome c. Apaf-1 oligomerizes to produce approximately 1.4-MDa and approximately 700-kDa apoptosome complexes, and the latter complex directly cleaves/activates procaspase-7. This approximately 700-kDa apoptosome complex, which is also formed in apoptotic MCF-7 cells, is assembled by rapid oligomerization of Apaf-1 and followed by a slower process of procaspase-9 recruitment and cleavage to form the p35/34 forms. However, procaspase-9 recruitment and processing are accelerated in lysates supplemented with caspase-3. In lysates containing very low levels of Smac and Omi/HtrA2, XIAP (X-linked inhibitor of apoptosis) binds tightly to caspase-9 in the apoptosome complex, and as a result caspase-7 processing is abrogated. In contrast, in MCF-7 lysates containing Smac and Omi/HtrA2, active caspase-7 is released from the apoptosome and forms a stable approximately 200-kDa XIAP-caspase-7 complex, which apparently does not contain cIAP1 or cIAP2. Thus, in comparison to caspase-3-containing cells, XIAP appears to have a more significant antiapoptotic role in MCF-7 cells because it directly inhibits caspase-7 activation by the apoptosome and also forms a stable approximately 200-kDa complex with active caspase-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号