首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purity of the Melbourne Zoo mandrill (Mandrillus sphinx) population has been questioned, based on the facial coloration of the female members. Consequently, it is believed that the original founding female of the Melbourne Zoo “mandrill” population was a drill–mandrill hybrid. This individual, whose mother was suspected to be a drill (Mandrillus leucophaeus), is the only female to have contributed mitochondrial DNA (mtDNA) to the population. The strictly maternal inheritance of mtDNA in vertebrates makes this molecule an ideal marker for the tracing of maternal gene flow. DNA sequence data from a 307-base pair (bp) region of the mitochondrial gene cytochrome b, amplified via the poly-merase chain reaction (PCR), was obtained from the Melbourne Zoo individuals, and compared to the homologous sequences from known specimens of both mandrill and drill. The results obtained show that all current members of the “mandrill” population possess drill mtDNA, supporting the belief that the original female founder was a hybrid. This type of genetic study has significant implications for the conservation and future management of this and other captive populations. © 1993 Wiley-Liss, Inc.  相似文献   

2.

Background  

Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample.  相似文献   

3.
Genetic variation of mitochondrial DNA (mtDNA) in 18 great tits (Parus major) from three neighboring localities in Sweden was investigated with eight tetranucleotide restriction endonucleases. The 18 individuals could be separated into 13 different maternal lineages. The high number of female lineages present in this regional population contrasts with a low level of sequence divergence between the different mtDNA clones, with a mean of 0.19% sequence divergence between all individuals. There was no obvious spatial structuring of mtDNA clones among the three localities. The presence of a high number of different clones with a low degree of sequence divergence could be explained by the effects of a large long-term effective population size, with the mtDNA clones having diverged about 25,000–200,000 years ago.This study was supported by the Swedish Natural Science Research Council, the Erik Philip-Sörensen Foundation, and the Nilsson-Ehle Foundation.  相似文献   

4.
Here we describe the complete nucleotide sequence of the mitochondrial genome (16 583/4 bp) of the zebra finch (Taeniopygia guttata). Primers were designed based on highly conserved regions of an alignment of three passerine complete mitochondrial DNA (mtDNA) sequences. A combination of overlapping long polymerase chain reaction (PCR) purification, followed by fully nested PCR and sequencing was used to determine the complete mtDNA genome. Six birds, from distinct maternal lineages of a pedigreed population were sequenced. Five novel haplotypes were identified. These sequences provide the first data for sequence variation across the whole mitochondrial genome of a passerine bird species.  相似文献   

5.
Recent studies have used a variety of theoretical arguments to show that mitochondrial (mt) DNA rarely evolves as a strictly neutral marker and that selection operates on the mtDNA of many species. However, the vast majority of researchers are not convinced by these arguments because data linking mtDNA variation with phenotypic differences are limited. We investigated sequence variation in the three mtDNA and nine nuclear genes (including all isoforms) that encode the 12 subunits of cytochrome c oxidase of the electron transport chain in Drosophila. We then studied cytochrome c oxidase activity as a key aspect of mitochondrial bioenergetics and four life-history traits. In Drosophila simulans, sequence data from the three mtDNA encoded cytochrome c oxidase genes show that there are 76 synonymous and two nonsynonymous fixed differences among flies harboring siII compared with siIII mtDNA. In contrast, 13 nuclear encoded genes show no evidence of genetic subdivision associated with the mtDNA. Flies with siIII mtDNA had higher cytochrome c oxidase activity and were more starvation resistant. Flies harboring siII mtDNA had greater egg size and fecundity, and recovered faster from cold coma. These data are consistent with a causative role for mtDNA variation in these phenotypic differences, but we cannot completely rule out the involvement of nuclear genes. The results of this study have significant implications for the use of mtDNA as an assumed neutral marker and show that evolutionary shifts can involve changes in mtDNA despite the small number of genes encoded in the organelle genome.  相似文献   

6.
Significant but subtle differentiation was detected for both microsatellite DNA and mitochondrial DNA among four populations of American shad Alosa sapidissima . The data indicate that straying among rivers is sufficient to permit only marginal population differentiation in this species, but suggest that individual river populations should be managed as distinct stocks. Comparison of the Hudson and Columbia populations, the latter derived from the former over 100 years ago, revealed only a slight reduction in microsatellite DNA variation for the founded population but halving of mitochondrial DNA, consistent with the haploid maternal inheritance of the latter marker. The depleted and endangered James River (Virginia) population and two other Atlantic coast populations exhibited similar levels of microsatellite DNA variation, but mtDNA diversity in the James River was marginally lower than in other Atlantic populations, again consistent with the low effective population size of mtDNA.  相似文献   

7.
The genetic composition of the Russian population was investigated by analyzing both mitochondrial DNA (mtDNA) and Y-chromosome loci polymorphisms that allow for the different components of a population gene pool to be studied, depending on the mode of DNA marker inheritance. mtDNA sequence variation was examined by using hypervariable segment I (HVSI) sequencing and restriction analysis of the haplogroup-specific sites in 325 individuals representing 5 Russian populations from the European part of Russia. The Y-chromosome variation was investigated in 338 individuals from 8 Russian populations (including 5 populations analyzed for mtDNA variation) using 12 binary markers. For both uniparental systems most of the observed haplogroups fell into major West Eurasian haplogroups (97.9% and 99.7% for mtDNA and Y-chromosome haplogroups, respectively). Multidimensional scaling analysis based on pairwise F(ST) values between mtDNA HVSI sequences in Russians compared to other European populations revealed a considerable heterogeneity of Russian populations; populations from the southern and western parts of Russia are separated from eastern and northern populations. Meanwhile, the multidimensional scaling analysis based on Y-chromosome haplogroup F(ST) values demonstrates that the Russian gene pool is close to central-eastern European populations, with a much higher similarity to the Baltic and Finno-Ugric male pools from northern European Russia. This discrepancy in the depth of penetration of mtDNA and Y-chromosome lineages characteristic for the most southwestern Russian populations into the east and north of eastern Europe appears to indicate that Russian colonization of the northeastern territories might have been accomplished mainly by males rather than by females.  相似文献   

8.
Recombination is thought to occur only rarely in animal mitochondrial DNA (mtDNA). However, detection of mtDNA recombination requires that cells become heteroplasmic through mutation, intramolecular recombination or 'leakage' of paternal mtDNA. Interspecific hybridization increases the probability of detecting mtDNA recombinants due to higher levels of sequence divergence and potentially higher levels of paternal leakage. During a study of historical variation in Atlantic salmon (Salmo salar) mtDNA, an individual with a recombinant haplotype containing sequence from both Atlantic salmon and brown trout (Salmo trutta) was detected. The individual was not an F1 hybrid but it did have an unusual nuclear genotype which suggested that it was a later-generation backcross. No other similar recombinant haplotype was found from the same population or three neighbouring Atlantic salmon populations in 717 individuals collected during 1948-2002. Interspecific recombination may increase mtDNA variability within species and can have implications for phylogenetic studies.  相似文献   

9.
It has been suggested that mitochondrial DNA (mtDNA) may play an important role in aging. Yet, few empirical studies have tested this hypothesis, partly because the degree of sequence polymorphism in mtDNA is assumed to be low. However, low sequence variation may not necessarily translate into low phenotypic variation. Here, we report an experiment that tests whether there is within-population variation in cytoplasmic genes for female longevity and senescence. To achieve this, we randomly selected 25 "mitochondrial founders" from a single, panmictic population of Drosophila melanogaster and used these founders to generate distinct "mt" lines in which we controlled for the nuclear background by successive backcrossing. Potential confounding effects of cytoplasmically transmitted bacteria were eliminated by tetracycline treatment. The mt lines were then assayed for differences in longevity, Gompertz intercept (frailty), and demographic rate of change in mortality with age (rate-of-senescence) in females. We found significant cytoplasmic effects on all three variables. This provides evidence that genetic variation in cytoplasmic genes, presumably mtDNA, contributes to variation in female mortality and aging.  相似文献   

10.
Previous studies have investigated the human population history of eastern North America by examining mitochondrial DNA (mtDNA) variation among Native Americans, but these studies could only reconstruct maternal population history. To evaluate similarities and differences in the maternal and paternal population histories of this region, we obtained DNA samples from 605 individuals, representing 16 indigenous populations. After amplifying the amelogenin locus to identify males, we genotyped 8 binary polymorphisms and 10 microsatellites in the male-specific region of the Y chromosome. This analysis identified 6 haplogroups and 175 haplotypes. We found that sociocultural factors have played a more important role than language or geography in shaping the patterns of Y chromosome variation in eastern North America. Comparisons with previous mtDNA studies of the same samples demonstrate that male and female demographic histories differ substantially in this region. Postmarital residence patterns have strongly influenced genetic structure, with patrilocal and matrilocal populations showing different patterns of male and female gene flow. European contact also had a significant but sex-specific impact due to a high level of male-mediated European admixture. Finally, this study addresses long-standing questions about the history of Iroquoian populations by suggesting that the ancestral Iroquoian population lived in southeastern North America.  相似文献   

11.
We have examined mitochondrial DNA (mtDNA) variation in samples of the mussel Mytilus galloprovincialis from the Black Sea, the Mediterranean and the Spanish Atlantic coast by scoring for presence or absence of cleavage at 20 restriction sites of a fragment of the COIII gene and at four restriction sites of the 16S RNA gene. This species contains two types of mtDNA genomes, one that is transmitted maternally (the F type) and one that is transmitted paternally (the M type). The M genome evolves at a higher rate than the F genome. Normally, females are homoplasmic for an F type and males are heteroplasmic for an F and an M type. Occasionally molecules from the F lineage invade the paternal transmission route, resulting in males that carry two F-type mtDNA genomes. These features of the mussel mtDNA system give rise to a new set of questions when using mtDNA variation in population studies and phylogeny. We show here that the two mtDNA types provide different information with regard to amounts of variation and genetic distances among populations. The F genome exhibits higher degrees of diversity within populations, while the M genome produces higher degrees of differentiation among populations. There is a strong differentiation between the Atlantic and the Black Sea. The Mediterranean samples have intermediate haplotype frequencies, yet are much closer to the Black Sea than to the Atlantic. We conclude that in this species gene flow among the three Seas is restricted and not enough to erase the combined effect of mutation and random drift. In one sample, that from the Black Sea, the majority of males did not contain an M mtDNA type. This suggests that a molecule of the maternal lineage has recently invaded the paternal route and has increased its frequency in the population to the point that the present pool of paternally transmitted mtDNA molecules is highly heterogeneous and cannot be used to read the population's history. This liability of the paternal route means that in species with doubly uniparental inheritance, the maternal lineage provides more reliable information for population and phylogenetic studies.  相似文献   

12.
Mitochondrial DNA (mtDNA) variation has been suggested as a possible cause of variation in male fertility because sperm activity is tightly coupled to mitochondrial oxidative phosphorylation and ATP production, both of which are sensitive to mtDNA mutations. Since male‐specific phenotypes such as sperm have no fitness consequences for mitochondria due to maternal mitochondrial (and mtDNA) inheritance, mtDNA mutations that are deleterious in males but which have negligible or no fitness effect in females can persist in populations. How often such mutations arise and persist is virtually unknown. To test whether there were associations between mtDNA variation and sperm performance, we haplotyped 250 zebra finches Taeniopygia guttata from a large pedigreed‐population and measured sperm velocity using computer‐assisted sperm analysis. Using quantitative genetic ‘animal’ models, we found no effect of mtDNA haplotype on sperm velocity. Therefore, there is no evidence that in this system mitochondrial mutations have asymmetric fitness effects on males and females, leading to genetic variation in male fertility that is blind to natural selection.  相似文献   

13.
OBJECTIVES: The Finns, and to a more extreme extent the Saami, are genetic outliers in Europe. Despite the close geographical contact between these populations, no major contribution of Saami mtDNA haplotypes to the Finnish population has been detected. METHODS: To examine the extent of maternal gene flow from the Saami into Finnish populations, we determined the mtDNA variation in 403 persons living in four provinces in central and northern Finland. For all of these samples, we assessed the frequencies of mtDNA haplogroups and examined sequence variation in the hypervariable segment I (HVS-I). The resulting data were compared with published information for Saami populations. RESULTS: The frequencies of the mtDNA haplogroups differed between the populations of the four provinces, suggesting a distinction between northern and central Finland. Analysis of molecular variance suggested that the Saami deviated less from the population of northern Finland than from that of central Finland. Five HVS-I haplotypes, including that harboring the Saami motif and the Asian-specific haplogroup Z, were shared between the Finns and the Saami and allowed comparisons between the populations. Their frequency was highest in the Saami and decreased towards central Finland. CONCLUSIONS: The high frequency of certain mtDNA haplotypes considered to be Saami specific in the Finnish population suggests a genetic admixture, which appears to be more pronounced in northern Finland. Furthermore, the presence of haplogroup Z in the Finns and the Saami indicates that traces of Asian mtDNA genotypes have survived in the contemporary populations.  相似文献   

14.
小口白甲鱼都柳江种群mtDNA D环的序列变异及遗传多样性   总被引:1,自引:0,他引:1  
采用PCR结合DNA测序技术,测定分析了易危鱼类小口白甲鱼(Onychostoma lini)都柳江种群36个个体mtDNA D环约470bp序列的变异及遗传多样性。结果表明,在36个个体中,该序列的长度为469~475bp,其碱基组成为A+T的平均含量(68.4%)高于G+C(31.6%)。共检测到25个多态位点,其中转换19个、颠换6个。核苷酸多样性(π)为0.00575,平均核苷酸差异数(K)为2.695。36个个体分属5个单倍型,单倍型多样度(Hd)为0.260,单倍型间的平均遗传距离(P)为0.026。5个单倍型构建的UPGMA系统树聚为2个分支。目前小口白甲鱼都柳江种群mtDNA D环序列存在着较丰富的变异和遗传多样性。  相似文献   

15.
The use of mitochondrial DNA (mtDNA) continues to dominate studies of human genetic variation and evolution. Recent work has re-affirmed the strict maternal inheritance of mtDNA, yielded new insights into the extent and nature of intra-individual variation, supported a recent African origin of human mtDNA, and amply demonstrated the utility of mtDNA in tracing population history and in analyses of ancient remains.  相似文献   

16.
鸟类线粒体DNA研究概述   总被引:8,自引:0,他引:8  
陈晓芳  李爽  王黎  袁晓东  汤敏谦  李庆伟 《遗传》2002,24(3):371-375
线粒体DNA作为理想的分子标记已被广泛用于鸟类种群遗传学和进化遗传学的研究,并取得了许多有意义的结果。本文介绍鸟类线粒体DNA的组成、结构特点及多态性的研究,综述近年来有关鸟类分子进化研究的进展情况,对今后的发展进行了初步的探讨。 Abstract:Mitochondrial DNA as a genetic marker has been successfully applied to the study of molecular evolution of birds.The apparently maternal inheritance of mitochondrial DNA and its fast evolution in primary sequence has made it attractive in population and evolutionary genetics.Mitochondrial DNA of birds displays two characteristics not seen in other vertebrates mtDNA,that is,a novel gene order and the absence of an equivalent to the light-strand replication origin.The research on polymorphism of mtDNA can resolve phylogenies of birds both at lower and higher taxonomic levels.Here we review progress on avian molecular evolution in recent years,and make preliminary studies of the development in this field.  相似文献   

17.
Restriction fragment length polymorphism analysis of mitochondrial DNA (mtDNA) was used to examine the genetic structure among field voles (Microtus agrestis) from southern and central Sweden. A total of 57 haplotypes was identified in 158 voles from 60 localities. Overall mtDNA diversity was high, but both haplotype and nucleotide diversity exhibited pronounced geographic heterogeneity. Phylogenetic analyses revealed a shallow tree with seven primary mtDNA lineages separated by sequence divergences ranging from 0.6% to 1.0%. The geographic structure of mtDNA diversity and lineage distribution was complex but strongly structured and deviated significantly from an equilibrium situation. The extensive mtDNA diversity observed and the recent biogeographic history of the region suggests that the shallow mtDNA structure in the field vole cannot be explained solely by stochastic lineage sorting in situ or isolation by distance. Instead, the data suggest that the genetic imprints of historical demographic conditions and vicariant geographic events have been preserved and to a large extent determine the contemporary geographic distribution of mtDNA variation. A plausible historical scenario involves differentiation of mtDNA lineages in local populations in glacial refugia, a moving postglacial population structure, and bottlenecks and expansions of mtDNA lineages during the postglacial recolonization of Sweden. By combining the mtDNA data with an analysis of Y-chromosome variation, a specific population unit was identified in southwestern Sweden. This population, defined by a unique mtDNA lineage and fixation of a Y-chromosome variant, probably originated in a population bottleneck in southern Sweden about 12,000 to 13,000 calendar years ago.  相似文献   

18.
线粒体DNA和人类进化   总被引:17,自引:1,他引:16  
线粒体DNA(mtDNA)由于自身比较独特的遗传特性(母系遗传、缺乏重组和进化速率高)而被广泛地应用于人类群体的起源和演化研究。通过对其全序列的限制性酶切和D-环高变区序列数据的分析,mtDNA较好地阐明了人类学中诸如现代人类起源、人群过去动态的估计以及单个人群的区域性微分化和人口历史学等问题。综述了近年来世界各人群mtDNA的研究进展、研究方法的改进、mtDNA与核基因标记结果的异同、mtDNA  相似文献   

19.
Mitochondrial DNA (mtDNA) has been a marker of choice for reconstructing historical patterns of population demography, admixture, biogeography and speciation. However, it has recently been suggested that the pervasive nature of direct and indirect selection on this molecule renders any conclusion derived from it ambiguous. We review here the evidence for indirect selection on mtDNA in arthropods arising from linkage disequilibrium with maternally inherited symbionts. We note first that these symbionts are very common in arthropods and then review studies that reveal the extent to which they shape mtDNA evolution. mtDNA diversity patterns are compatible with neutral expectations for an uninfected population in only 2 of 19 cases. The remaining 17 studies revealed cases of symbiont-driven reduction in mtDNA diversity, symbiont-driven increases in diversity, symbiont-driven changes in mtDNA variation over space and symbiont-associated paraphyly of mtDNA. We therefore conclude that these elements often confound the inference of an organism's evolutionary history from mtDNA data and that mtDNA on its own is an unsuitable marker for the study of recent historical events in arthropods. We also discuss the impact of these studies on the current programme of taxonomy based on DNA bar-coding.  相似文献   

20.
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号