首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为了解我国家猪猪内源性逆转录病毒(PERV)生物学的基本特征,为评价应用猪器官、组织、细胞进行猪-人间跨种移植的生物安全性提供理论基础.本文采用PCR方法调查12个家猪品系外周血白细胞DNA基因组PERV的生物学特征,并应用SS-SSCP、RFLP-PCR方法分析PERV基因片段的差异性及采用RT-PCR方法和半定量方法分析2个品系小型猪13种组织PERV表达的差异.结果表明12个品系猪外周血白细胞DNA基因组普遍存在PERV-A、-B基因序列,未发现单链构象多态性;部分品系猪PERV env基因序列片段存在限制性片段长度多态性.分析2个品系13种组织均表达PERV-A、-B、-C,肾、淋巴结、肝为高表达器官,胰腺和脑组织为低表达器官,PERV-C mRNA丰度明显低于PERV-A、-B mRNA.PERV env存在限制性片段长度多态性、PERVA存在碱基缺失和错配的现象,有可能在猪异种移植中构成PERV感染的潜在危险性,这是在猪异种移植过程中值得高度关注的问题.  相似文献   

2.
湖南沙子岭猪内源性逆转录病毒的研究   总被引:6,自引:1,他引:5  
邢晓为  薛立群  黄生强  黎淑娟  王维 《遗传》2006,28(7):799-804
为评价从猪到人异种移植的生物安全性提供依据,从湖南沙子岭猪的保种群内随机采集31头个体的耳样组织,应用PCR和RT-PCR技术分别检测这些组织中内源性逆转录病毒(porcine endogenous retrovirus,PERV)的前病毒DNA和mRNA,并对PCR扩增的灵敏性进行评估。多组织RT-PCR检测3头沙子岭猪肾、心、肝、肺、脾 等组织中PERV的表达情况,了解其在各组织中的分布情况;最后,扩增、测序该猪种的env基因,结果用NCBI中的BLAST软件进行分析。PCR和RT-PCR结果表明,所检测的31头沙子岭猪均带有PERV前病毒DNA,耳样组织中均有PERV mRNA表达,其中有2头个体携带 env-A、env-B、env-C 3种囊膜蛋白基因,而其余的29头个体只带有env-A、env-B 两种囊膜蛋白基因,未检测到env-C基因。多组织RT-PCR扩增结果表明,3头沙子岭猪的肾、心、肝、肺、脾等组织中,pol、gag、env-A、env-B 基因均有表达,未检测到env-C基因表达。测序沙子岭猪的env基因,结果发现,沙子岭猪env-B 和env-C基因与其他猪种序列比较分别存在2 和10个碱基的差异,而env-A基因序列没有差异,说明不同的猪种之间 env基因存在多态性。以上结果表明,沙子岭猪种群携带PERV,其亚型主要以PERV-A,B为主;PERV在该猪种肾、心、肝、肺、脾等多种组织中的分布没有明显组织特异性,且93.5 % (29/31)个体表现为 env-C 基因缺失,提示沙子岭猪作为候选猪种可能在异种移植中具有较好的应用前景。  相似文献   

3.
异种移植的病毒安全性研究进展   总被引:1,自引:0,他引:1  
猪-人异种移植有望解决人源器官短缺的严重问题。然而,以前病毒(provirus)形式整合入猪基因组中的猪内源性反转录病毒(porcine endogenous retrovirus,PERV)难以去除,PERV有可能通过异种移植传播给人类,甚至产生新的病毒性疾病。本文回顾了PERV与异种移植病毒安全性及我国特有小型猪中PERV的相关研究。  相似文献   

4.
目的:检测五指山小型猪不同器官内猪内源性反转录病毒(PERV)的存在与表达情况。方法:提取心、肝、脾、肺、肾、胸腺等6种器官基因组DNA与总RNA,用PCR、反转录PCR对PERV结构基因gag、pol、env进行定性检测,用实时定量反转录PCR对pol基因进行相对定量检测。结果:6种器官中均能检测到PERV结构基因gag、pol、env的存在与表达;从m RNA水平上看,不同器官内pol基因的相对表达量不存在显著性差异。结论:五指山小型猪不同器官内PERV存在与表达的检测,对进一步阐明五指山小型猪来源的PERV分子生物学特性及深入评价猪-人异种移植病原安全性具有重要意义。  相似文献   

5.
猪与人体在器官结构、生理解剖上相似性高,被认为是最佳的异种移植供体,能够有效解决人类供体器官短缺的问题。猪内源性逆转录病毒(porcine endogenous retrovirus, PERV)是一种C型逆转录病毒,以一种前病毒DNA的形式整合在猪的细胞基因组中,随细胞染色体的复制而复制,无法通过无特定病原体(specific pathogen-free, SPF)培育消除,其在异种移植中具有潜在的感染风险。了解PERV的特性,探索PERV预防策略,将有助于猪作为异种移植供体在临床的应用。  相似文献   

6.
猪内源性反转录病毒在中国实验小型猪中的存在与表达   总被引:2,自引:0,他引:2  
目的对中国实验小型猪中内源性反转录病毒的存在与mRNA的表达进行检测,摸清中国实验小型猪中内源性反转录病毒的携带情况.方法根据已发表的PERV的序列设计并合成了三对引物,分别用于检测PERV核心蛋白基因(gag)、多聚酶基因(pol)及囊膜基因(env)的存在与表达;同时,根据目前通用的env基因分型方法合成了三对用于分型检测的引物env-A、env-B、env-C.应用PCR、RT-PCR扩增的方法,对来自于中国实验小型猪外周血淋巴细胞的DNA和RNA样品进行了检测.结果在6个被检DNA样品中均检出了PERV特异性DNA的存在;同样,在被检RNA样品中均有PERV特异性RNA的表达,且所表达的PERV均为A型和B型,在所有样品中均未检出C型PERV的表达.结论初步表明中国实验小型猪中存在内源性反转录病毒序列,且能以mRNA的形式表达,这一结果为我国特有小型猪的开发、利用及其病毒安全性评价奠定了基础.  相似文献   

7.
猪皮肤成纤维细胞PERV体外和体内感染性的研究   总被引:1,自引:0,他引:1  
为了解猪皮肤成纤维细胞PERV在体外和体内的感染性,通过建立猪皮肤成纤维细胞系,将所建细胞系与人胚胎肾293细胞体外共培养,并移植于严重联合免疫缺陷鼠(SCID鼠)皮下进行猪皮肤成纤维细胞PERV的体外和体内感染性实验。结果表明,猪皮肤成纤维细胞与人胚胎肾细胞共培养过程中,猪内源性逆转录病毒感染人胚胎肾细胞,进一步证实和拓宽了猪细胞PERV感染人细胞的范畴;猪皮肤成纤维细胞移植SCID鼠皮下后,导致SCID鼠发生猪细胞微嵌合(78.57%)和PERV在体内感染(85.71%)并且波及远离移植部位的多种组织或器官,但是并未检测出SCID鼠组织中表达PERV env RNA。这就证实了猪皮肤成纤维细胞PERV的体外感染性和在小鼠体内的感染性,但未能找到PERV在体内活跃复制的明显证据。因而,在猪异种移植过程中PERV传播的潜在危险仍然是必须高度重视的生物安全性问题。  相似文献   

8.
中国两头乌猪品种内源性逆转录病毒基因研究   总被引:2,自引:0,他引:2  
目的对5个中国两头乌猪品种(通城猪、东山猪、沙子岭猪、赣西两头乌猪和金华猪)及3个国外品种(大白猪、长白猪和杜洛克猪)猪内源性逆转录病毒(PERV)的核心蛋白(gag)基因、多聚酶(pol)基因、囊膜(env)基因的3个亚型A、B、C,分别从DNA和RNA水平上进行研究,以发现中国两头乌猪品种在异种器官移植中的资源优势。方法利用PCR方法在DNA水平上对PERV基因的三个亚型进行鉴定,并通过半定量PCR方法在RNA水平上检测通城猪和大白猪PERV各亚型在心、肝、脾、肺、肾、肌肉、脂肪、淋巴和脑组织中的表达谱。结果4个华中两头乌猪种中env-AB型为主要PERV亚型,分别占被测总数的92%~100%。在这4个品种中均没有检测到C亚型,金华猪以及3个国外猪种中均检测到了C亚型,病毒亚型种类也更丰富。半定量PCR实验结果显示gag、pol基因在两个品种9个组织中广泛表达,env-A在通城猪的心、肝、肺、脂肪和淋巴组织中表达量较低,env-B在通城猪的心脏和淋巴组织中表达量较低,而env-B在大白猪的肾脏中表达很低,其他所测8个组织中表达量都较高。结论通城猪、东山猪、赣西两头乌猪和沙子岭猪可以做为较佳的异种移植候选供体,具有良好的应用前景。  相似文献   

9.
抽样检测广西巴马小型猪内源性反转录病毒(PERV),了解广西巴马小型猪携带PERV的情况。为培育无PERV广西巴马小型猪提供依据。对广西巴马小型猪PERV-A、PERV-B基因亚型以及陆川猪PERV-C基因亚型进行基因克隆分析,三种亚型基因克隆片段与NCBI上的目的片段一致,确保了PCR分型方法检测PERV的准确性。根据通用的env基因分型方法检测广西巴马小型猪群体内PERV-A、PERV-B、PERV-C基因的存在情况。在50份巴马小型猪样品中,96%的样品中存在PERV-A亚型,100%的样品存在PERV-B亚型,所有广西巴马小型猪样品中都不存在PERV-C亚型;其中,有96%的样品同时存在PERV-A、PERV-B两种亚型,而在24份陆川猪样品中有58.3%存在PERV-C型。广西巴马小型猪没有检测到PERV-C亚型,可以作为无PERV小型猪的培养对象,具有很好的应用前景。  相似文献   

10.
猪CFL2b基因部分序列的克隆及组织表达谱分析   总被引:2,自引:0,他引:2  
在猪QTL定位基础上,利用比较基因组学原理,参照猪CFL2的cDNA序列,对猪CFL2基因的部分基因组DNA序列进行克隆、测序;利用RT-PCR半定量法检测CFL2基因在不同组织的表达情况.结果显示,所克隆的CFL2基因部分基因组DNA序列长度为2 377bp,包括4个外显子和4个内含子,该基因mRNA序列与已报道的人CFL2b基因序列相似性为89%;猪CFL2基因在多种组织中均有表达,但在骨骼肌和心肌中表达丰度较高.结果表明,本研究成功测序了猪CFL2b基因部分基因组DNA序列,为进一步研究该基因与肌肉发育及生理功能的关系奠定了基础.  相似文献   

11.
The genetic nature and biological effects of recombination between porcine endogenous retroviruses (PERV) were studied. An infectious molecular clone was generated from a high-titer, human-tropic PERV isolate, PERV-A 14/220 (B. A. Oldmixon, et al. J. Virol. 76:3045-3048, 2002; T. A. Ericsson et al. Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). To analyze this sequence and 15 available full-length PERV nucleotide sequences, we developed a sequence comparison program, LOHA(TM) to calculate local sequence homology between two sequences. This analysis determined that PERV-A 14/220 arose by homologous recombination of a PERV-C genome replacing an 850-bp region around the pol-env junction with that of a PERV-A sequence. This 850-bp PERV-A sequence encompasses the env receptor binding domain, thereby conferring a wide host range including human cells. In addition, we determined that multiple regions derived from PERV-C are responsible for the increased infectious titer of PERV-A 14/220. Thus, a single recombination event may be a fast and effective way to generate high-titer, potentially harmful PERV. Further, local homology and phylogenetic analyses between 16 full-length sequences revealed evidence for other recombination events in the past that give rise to other PERV genomes that possess the PERV-A, but not the PERV-B, env gene. These results indicate that PERV-A env is more prone to recombination with heterogeneous backbone genomes than PERV-B env. Such recombination events that generate more active PERV-A appear to occur in pigs rather frequently, which increases the potential risk of zoonotic PERV transmission. In this context, pigs lacking non-human-tropic PERV-C would be more suitable as donor animals for clinical xenotransplantation.  相似文献   

12.
Multiple groups of novel retroviral genomes in pigs and related species   总被引:15,自引:0,他引:15  
In view of the concern over potential infection hazards in the use of porcine tissues and organs for xenotransplantation to humans, we investigated the diversity of porcine endogenous retrovirus (PERV) genomes in the DNA of domestic pigs and related species. In addition to the three known envelope subgroups of infectious gamma retroviruses (PERV-A, -B, and -C), classed together here as PERV group gamma 1, four novel groups of gamma retrovirus (gamma 2 to gamma 5) and four novel groups of beta retrovirus (beta 1 to beta 4) genomes were detected in pig DNA using generic and specific PCR primers. PCR quantification indicated that the retroviral genome copy number in the Landrace x Duroc F(1) hybrid pig ranged from 2 (beta 2 and gamma 5) to approximately 50 (gamma 1). The gamma 1, gamma 2, and beta 4 genomes were transcribed into RNA in adult kidney tissue. Apart from gamma 1, the retroviral genomes are not known to be infectious, and sequencing of a small number of amplified genome fragments revealed stop codons in putative open reading frames in several cases. Analysis of DNA from wild boar and other species of Old World pigs (Suidae) and New World peccaries (Tayassuidae) showed that one retrovirus group, beta 2, was common to all species tested, while the others were present among all Old World species but absent from New World species. The PERV-C subgroup of gamma1 genomes segregated among domestic pigs and were absent from two African species (red river hog and warthog). Thus domestic swine and their phylogenetic relatives harbor multiple groups of hitherto undescribed PERV genomes.  相似文献   

13.
The replication of porcine endogenous retrovirus subgroup A (PERV-A) and PERV-B in certain human cell lines indicates that PERV may pose an infectious risk in clinical xenotransplantation. We have previously reported that human-tropic PERVs isolated from infected human cells following cocultivation with miniature swine peripheral blood mononuclear cells (PBMC) are recombinants of PERV-A with PERV-C. Here, we report that these recombinants are exogenous viruses in miniature swine; i.e., they are not present in the germ line DNA. These viruses were invariably present in miniature swine that transmitted PERV to human cells and were also identified in some miniature swine that lacked this ability. These data, together with the demonstration of the absence of both replication-competent PERV-A and recombinant PERV-A/C loci in the genome of miniature swine (L. Scobie, S. Taylor, J. C. Wood, K. M. Suling, G. Quinn, C. Patience, H.-J. Schuurman, and D. E. Onions, J. Virol. 78:2502-2509, 2004), indicate that exogenous PERV is the principal source of human-tropic virus in these animals. Interestingly, strong expression of PERV-C in PBMC correlated with an ability of the PBMC to transmit PERV-A/C recombinants in vitro, indicating that PERV-C may be an important factor affecting the production of human-tropic PERV. In light of these observations, the safety of clinical xenotransplantation from miniature swine will be most enhanced by the utilization of source animals that do not transmit PERV to either human or porcine cells. Such animals were identified within the miniature swine herd and may further enhance the safety of clinical xenotransplantation.  相似文献   

14.
The provirus DNA sequence of porcine endogenous retrovirus (PERV) distributed in the pig genome is the major obstacle that restricts the swine as the organ donors in xenotransplantation, and the copy number of PERV varies greatly among different breeds and individuals. In the experiment, 67 healthy, female Chinese Experimental Mini-Pigs (CEMPs) aged at 3–6 months were selected from the Animal Husbandry Station of China Agricultural University, the copy number of PERV and types of envelope protein gene (env) were then investigated by means of PCR analysis and Southern blotting. It is showed that the distribution of types of envelope protein gene in Landrace and CEMPs makes little difference, but the proportion of individuals carrying two types of envelope protein gene (env-A and env-B, which is denoted as env-AB) is much larger than those which carry only one type of envelope protein gene (env-A or env-B). Meanwhile, two endogenous retrovirus free pigs were found for the first time during our research, and the copy number of others is relatively low, which is about 10 to 20. All the results illuminate the genetic diversity of indigenous pig breeds in China and the potential of CEMPs to serve as organ donors in xenotransplantation.  相似文献   

15.
The potential transmission of porcine endogenous retroviruses (PERVs) has raised concern in the development of porcine xenotransplantation products. Our previous studies have resulted in the identification of animals within a research herd of inbred miniature swine that lack the capacity to transmit PERV to human cells in vitro. In contrast, other animals were capable of PERV transmission. The PERVs that were transmitted to human cells are recombinants between PERV-A and PERV-C in the post-VRA region of the envelope (B. A. Oldmixon, J. C. Wood, T. A. Ericsson, C. A. Wilson, M. E. White-Scharf, G. Andersson, J. L. Greenstein, H. J. Schuurman, and C. Patience, J. Virol. 76:3045-3048, 2002); these viruses we term PERV-A/C. This observation prompted us to determine whether these human-tropic replication-competent (HTRC) PERV-A/C recombinants were present in the genomic DNA of these miniature swine. Genomic DNA libraries were generated from one miniature swine that transmitted HTRC PERV as well as from one miniature swine that did not transmit HTRC PERV. HTRC PERV-A/C proviruses were not identified in the germ line DNAs of these pigs by using genomic mapping. Similarly, although PERV-A loci were identified in both libraries that possessed long env open reading frames, the Env proteins encoded by these loci were nonfunctional according to pseudotype assays. In the absence of a germ line source for HTRC PERV, further studies are warranted to assess the mechanisms by which HTRC PERV can be generated. Once identified, it may prove possible to generate animals with further reduced potential to produce HTRC PERV.  相似文献   

16.
17.
Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting. Overcoming zoonotic barriers in xenotransplantation is more complicated by recombination. To achieve successful xenotransplantation, studies on the recombination in PERVs are important. Here, we cloned and sequenced proviral PERV env sequences from pig gDNAs to analyze natural recombination. The envelope is the most important element in retroviruses as a pivotal determinant of host tropisms. As a result, a total of 164 PERV envelope genes were cloned from pigs (four conventional pigs and two miniature pigs). Distribution analysis and recombination analysis of PERVs were performed. Among them, five A/B recombinant clones were identified. Based on our analysis, we determined the minimum natural recombination frequency among PERVs to be 3%. Although a functional recombinant envelope clone was not found, our data evidently show that the recombination event among PERVs may occur naturally in pigs with a rather high possibility.  相似文献   

18.
The sequences of the nuclear ribosomal DNA region spanning the first internal transcribed spacer, the 5.8S rRNA gene and the second internal transcribed spacer were determined for Ascaris samples from pigs and humans from different geographical regions. The sequences of the 5.8S gene and the second internal transcribed spacer were the same for all samples examined, whereas all Ascaris samples from humans had six (1.3%) nucleotide differences in the first internal transcribed spacer compared with those from pigs. These differences provided some support for the existence of separate species of Ascaris or population variation within this genus. Using a nucleotide difference within a site for the restriction enzyme HaeIII, a PCR-linked restriction fragment length polymorphism method was established which allowed the delineation of the Ascaris samples from pigs and humans used herein. Exploiting the sequence differences in the first internal transcribed spacer, a PCR-based single-strand conformation polymorphism method was established for future analysis of the genetic structure of pig and human Ascaris populations in sympatric and allopatric zones.  相似文献   

19.
西藏小型猪细胞色素b基因序列的比较   总被引:1,自引:0,他引:1  
目的对西藏小型猪Cyt b-基因序列进行分析,研究其遗传背景及其与国内家猪的亲缘关系。方法提取西藏小型猪和巴马小型猪、贵州香猪、五指山猪的全基因组DNA,设计引物扩增Cyt b基因,测序后进行碱基序列比对,建立亲缘关系树,分析西藏小型猪的遗传背景。结果西藏小型猪等国内部分品种猪的Cyt b基因序列与欧洲猪相比有14个变异位点;但是西藏小型猪与国内品种猪相比存在两个特殊碱基位点即在420位点T→C转换的同时在883位点存在G→A转换。结论西藏小型猪与巴马小型猪、贵州香猪、五指山猪等国内家猪有很近的亲缘关系。同时进一步证实西藏小型猪群体内存在一定的遗传分化。  相似文献   

20.
The pig (Sus scrofa) is a potential organ donor for man but porcine endogenous retroviruses (PERVs) represent an important concern for patients, and identification or engineering of PERV-free pigs suitable for xenotransplantation is a major undertaking. Consequently, studies of variability in pigs for the presence of PERVs at specific loci are a prerequisite. We identified genomic flanking sequences of two PERVs cloned in bacterial artificial chromosomes, a replication-competent PERV-A at locus 1q2.4 and a defective PERV-B at locus 7p1.1–2. PERV-A is embedded in the second repeat of a tandem of eight 190 bp repeats. A short duplicated 4 bp cellular motif, AGAC, was found at each flank of PERV-A and a degenerate 4 bp motif was found for PERV-B. At each locus, the PERV flanks matched expressed sequence tags available in public databases. Primer pairs were designed to amplify either genomic flanks or PERV-genomic junctions. Polymerase chain reaction screening was performed on pigs from 11 distinct Chinese breeds and from the European Large White breed. PERV-B at locus 7p1.1–2 was detected in all animals whereas the presence of PERV-A at locus 1q2.4 was variable. Our results suggest that a genetic selection can be designed to identify animals lacking a potentially active PERV at a specific locus and that Chinese and European pig breeds represent large biodiversity reservoirs to explore. Our results point also to the existence of PERVs that might be fixed in the pig genome, and that might not be eliminated by classical genetic selection.Accession numbers: Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under Accession numbers AY160111–AY160114  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号