首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eukaryotic translation initiation factor 6 (eIF6), also termed p27BBP, is an evolutionary conserved regulator of ribosomal function. The protein is involved in maturation and/or export from the nucleus of the 60S ribosomal subunit. Regulated binding to and release from the 60S subunit also regulates formation of 80S ribosomes, and thus translation. The protein is also found in hemidesmosomes of epithelial cells expressing β4 integrin and is assumed to regulate cross-talk between β4 integrin, intermediate filaments and ribosomes. In the present study we show that the Dictyostelium eIF6 (also called p27BBP) gene is expressed during growth, down-regulated during the first hours of starvation, and up-regulated again at the end of aggregation. Phagocytosis, and to a lesser extent pinocytic uptake of axenic medium, stimulate gene expression in starving cells. The eIF6 gene is present in single copy and its ablation is lethal. We utilized the green fluorescent protein (GFT) as fusion protein marker to investigate sequences responsible for eIF6 subcellular localization. The protein is found both in cytoplasm and nucleus, and is enriched in nucleoli. Deletion sequence analysis shows that nucle(ol)ar localization sequences are located within the N- and C-terminal subdomains of the protein.  相似文献   

2.
Cell cycle arrest in potentially dividing cells is often mediated by inhibitors of G1/S-phase cyclin-dependent kinases. The cyclin E/CDK2-inhibitor p27Kip1 has been implicated in this context in epithelial cells. We cloned and sequenced p27Kip1 of ducklings (Anas platyrhynchos) and used an in vitro assay system to study the mechanism of p27Kip1 downregulation in the nasal gland which precedes an increase in proliferation rate upon initial exposure of the animals to osmotic stress. Western blot studies revealed that p27Kip1 is downregulated during 24 h of osmotic stress in ducklings with the steepest decline in protein levels between 5 and 8 h. As indicated by the results of Northern blot and semi-quantitative PCR studies, protein downregulation is not accompanied by similar changes in mRNA levels indicating that Kip1 is regulated mainly at the translational (synthesis) or posttranslational level (degradation). Using recombinant duck Kip1 protein expressed in E. coli, we showed that Kip1 is subject to polyubiquitinylation by cytosolic enzymes from nasal gland cells indicating that loss of Kip1 may be regulated, at least in part, by acceleration of protein degradation. In cultured nasal gland tissue, attenuation of Kip1 expression could be induced by activation of the muscarinic acetylcholine receptor indicating that mAChR-receptor signalling may play a role in the re-entry of quiescent gland cells into the cell cycle.  相似文献   

3.
To develop a salt-tolerant upland rice cultivar (Oryza sativa L.), OsNHX1, a vacuolar-type Na+/H+ antiporter gene from rice was transferred into the genome of an upland rice cultivar (IRAT109), using an Agrobacterium-mediated method. Seven independent transgenic calli lines were identified by polymerase chain reaction (PCR) analysis. These 35S::OsNHX1 transgenic plants displayed a little accelerated growth during seedling stage but showed delayed flowering time and a slight growth retardation phenotype during late vegetative stage, suggesting that the OsNHX1 has a novel function in plant development. Northern and western blot analyses showed that the expression levels of OsNHX1 mRNA and protein in the leaves of three independent transgenic plant lines were significantly higher than in the leaves of wild type (WT) plants. T2 generation plants exhibited increased salt tolerance, showing delayed appearance and development of damage or death caused by salt stress, as well as improved recovery upon removal from this condition. Several physiological traits, such as increased Na+ content, and decreased osmotic potential in transgenic plants grown in high saline concentrations, further indicated that the transgenic plants had enhanced salt tolerance. Our results suggest the potential use of these transgenic plants for further agricultural applications in saline soil.  相似文献   

4.
S phase kinase-associated protein 2 (Skp2), an F-box protein, is required for the ubiquitination and consequent degradation of p27kip1. Previous reports have showed that p27kip1 played important roles in cell cycle regulation and neurogenesis in the developing central nervous system. But the distribution and function of p27kip1 and Skp2 in nervous system lesion and regeneration remains unclear. In this study, we observed that they were expressed mainly in both Schwann cells and axons in adult rat sciatic nerve. Sciatic nerve crush and transection resulted in a significant up-regulation of Skp2 and a down-regulation of p27kip1. By immunochemistry, we found that in the distal stumps of transected nerve from the end to the edge, the appearance of Skp2 in the edge is coincided with the decrease in p27kip1 levels. Changes of them were inversely correlated. Results obtained by coimmunoprecipitation and double labeling further showed their interaction in the regenerating process. Thus, these results indicate that p27kip1 and Skp2 likely play an important role in peripheral nerve injury and regeneration. Ai-Guo Shen and Shu-Xian Shi contributed equally to this work.  相似文献   

5.
6.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

7.
8.
In the present study we investigated the effect of extracellular gadolinium on amiloride-sensitive Na+ current across Xenopus alveolar epithelium by Ussing chamber experiments and studied its direct effect on epithelial Na+ channels with the patch-clamp method. As observed in various epithelia, the short-circuit current (I sc) and the amiloride-sensitive Na+ current (I ami) across Xenopus alveolar epithelium was downregulated by high apical Na+ concentrations. Apical application of gadolinium (Gd3+) increased I sc in a dose-dependent manner (EC 50 = 23.5 µM). The effect of Gd3+ was sensitive to amiloride, which indicated the amiloride-sensitive transcellular Na+ transport to be upregulated. Benz-imidazolyl-guanidin (BIG) and p-hydroxy-mercuribenzonic-acid (PHMB) probably release apical Na+ channels from Na+-dependent autoregulating mechanisms. BIG did not stimulate transepithelial Na+ currents across Xenopus lung epithelium but, interestingly, it prevented the stimulating effect of Gd3+ on transepithelial Na+ transport. PHMB increased I sc and this stimulation was similar to the effect of Gd3+. Co-application of PHMB and Gd3+ had no additive effects on I sc. In cell-attached patches on Xenopus oocytes extracellular Gd3+ increased the open probability (NP o) of Xenopus epithelial sodium channels (ENaC) from 0.72 to 1.79 and decreased the single-channel conductance from 5.5 to 4.6 pS. Our data indicate that Xenopus alveolar epithelium exhibits Na+-dependent non-hormonal control of transepithelial Na+ transport and that the earth metal gadolinium interferes with these mechanisms. The patch-clamp experiments indicate that Gd3+ directly modulates the activity of ENaCs.  相似文献   

9.
Superfusion of heart cells with hyperosmotic solution causes cell shrinkage and inhibition of membrane ionic currents, including delayed-rectifer K+ currents. To determine whether osmotic shrinkage also inhibits inwardly-rectifying K+ current (IK1), guinea-pig ventricular myocytes in the perforated-patch or ruptured-patch configuration were superfused with a Tyrodes solution whose osmolarity (T) relative to isosmotic (1T) solution was increased to 1.3–2.2T by addition of sucrose. Hyperosmotic superfusate caused a rapid shrinkage that was accompanied by a negative shift in the reversal potential of Ba2+-sensitive IK1, an increase in the amplitude of outward IK1, and a steepening of the slope of the inward IK1-voltage (V) relation. The magnitude of these effects increased with external osmolarity. To evaluate the underlying changes in chord conductance (GK1) and rectification, GK1-V data were fitted with Boltzmann functions to determine maximal GK1 (GK1max) and voltage at one-half GK1max (V0.5). Superfusion with hyperosmotic sucrose solutions led to significant increases in GK1max (e.g., 28±2% with 1.8T), and significant negative shifts in V0.5 (e.g., –6.7±0.6 mV with 1.8T). Data from myocytes investigated under hyperosmotic conditions that do not induce shrinkage indicate that GK1max and V0.5 were insensitive to hyperosmotic stress per se but sensitive to elevation of intracellular K+. We conclude that the effects of hyperosmotic sucrose solutions on IK1 are related to shrinkage-induced concentrating of intracellular K+.  相似文献   

10.
11.
Summary Aim: To compare the expression of p57 as indirect marker of genomic imprinting of CDKN1C in a series of infantile hemangiomas (IH) of patients with and without Beckwith–Wiedemann syndrome. Materials and methods: Cases of mammary, salivary gland, liver (one each), and placental (2 cases) capillary hemangiomas all with histological features akin to IH as well as typical examples of cutaneous (8 cases) IH were analyzed by immunohistochemistry with antibody against p57KIP2. This protein is the product of CDKN1C an imprinted, maternally expressed gene. The liver hemangioma and both chorioangiomas were from patients with Beckwith–Wiedemann syndrome. Positive and negative controls included normal placental tissue and complete hydatidiform mole, respectively. Positive staining was localized to nuclei. Results: Endothelial cells from the skin, breast and salivary gland hemangiomas were p57KIP2 positive while chorioangiomas and liver IH presenting in patients with Beckwith–Wiedemann syndrome were negative. Controls reacted appropriately. Conclusions: Endothelial cells of IH not associated with BWS normally express p57KIP2 while chorioangiomas and IH of the liver associated with BWS do not. These results suggest that the BWS IH may result from dysregulation of the cell cycle.  相似文献   

12.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

13.
There are few data reported on radionuclide contamination in Antarctica. The aim of this paper is to report 137Cs, 90Sr and 238,239+240Pu and 40K activity concentrations measured in biological samples collected from King George Island (Southern Shetlands, Antarctica), mostly during 2001–2002. The samples included: bones, eggshells and feathers of penguin Pygoscelis papua, bones and feathers of petrel Daption capense, bones and fur of seal Mirounga leonina, algae Himantothallus grandifolius, Desmarestia anceps and Cystosphaera jacquinotii, fish Notothenia corriceps, sea invertebrates Amphipoda, shells of limpet Nacella concina, lichen Usnea aurantiaco-atra, vascular plants Deschampsia antarctica and Colobanthus quitensis, fungi Omphalina pyxidata, moss Sanionia uncinata and soil. The results show a large variation in some activity concentrations. Samples from the marine environment had lower contamination levels than those from terrestrial ecosystems. The highest activity concentrations for all radionuclides were found in lichen and, to a lesser extent, in mosses, probably because lichens take up atmospheric pollutants and retain them. The only significant correlation (except for that expected between 238Pu and 239+240Pu) was noted for moss and lichen samples between plutonium and 90Sr. A tendency to a slow decrease with time seems to be occurring. Analyses of the activity ratios show varying fractionation between various radionuclides in different organisms. Algae were relatively more highly contaminated with plutonium and radiostrontium, and depleted with radiocesium. Feathers had the lowest plutonium concentrations. Radiostrontium and, to a lesser extent, Pu accumulated in bones. The present low intensity of fallout in Antarctic has a lower 238Pu/239+240Pu activity ratio than that expected for global fallout.  相似文献   

14.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is the most important pathogen in soybean production worldwide and causes substantial yield losses. An apparent narrow genetic base of SCN resistance was observed in current elite soybean cultivars, and searching for novel SCN resistance genes as well as novel resistance sources rather than focusing on the two important genes rhg1 and Rhg4 has become another major objective in soybean research. In the present paper we report a 1,477 bp Hs1 pro-1 homolog, named GmHs1 pro-1 . This gene was cloned from soybean variety Wenfeng 7 based on information for Hs1 pro-1 , a beet cyst nematode resistance gene in sugar beet. It has two domains, Hs1pro-1_N and Hs1pro-1_C, both of which are believed to confer resistance to nematodes. Of the 1,477 bp sequence in GmHs1 pro-1 , an open reading frame of 1,314 bp, encoding a protein with 437 amino acids, was flanked by a 5′-untranslated region of 27 bp and a 3′-untranslated region of 135 bp. Fourteen single-nucleotide polymorphisms (SNPs) were observed in 44 soybean accessions including 23 wild soybeans, 8 landraces, and 13 soybean varieties (or lines), among which 5 in wild soybeans and 3 in landrace accessions were unique. Sequence diversity analysis on the 44 soybean accessions showed π = 0.00168 and θ = 0.00218 for GmHs1 pro-1 ; landraces had the highest diversity, followed by wild soybeans, with varieties (or lines) having the lowest. Although we did not detect a significant effect of selection on GmHs1 pro-1 in the three populations, sequence diversity, unique SNPs, and phylogenetic analysis indicated a slight domestication bottleneck and an intensive selection bottleneck. High sequence diversity, more unique SNPs, and broader representation across the phylogenetic tree in wild soybeans and landraces indicated that wild collections and landrace accessions are invaluable germplasm for broadening the genetic base of elite soybean varieties resistant to SCN. C. Yuan and G. Zhou contributed to this paper equally.  相似文献   

15.
The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P m) and the growth rate constant (k) were determined, which showed that values of P m and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.  相似文献   

16.
Significant resolution improvement in 13C,13C-TOCSY spectra of uniformly deuterated and 13C, 15N-labeled protein and 13C,15N-labeled RNA samples is achieved by introduction of multiple-band-selective 13C-homodecoupling applied simultaneously with 1H- or 2H- and 15N-decoupling at all stages of multidimensional experiments including signal acquisition period. The application of single, double or triple band-selective 13C-decoupling in 2D-[13C,13C]-TOCSY experiments during acquisition strongly simplifies the homonuclear splitting pattern. The technical aspects of complex multiple-band homonuclear decoupling and hardware requirements are discussed. The use of this technique (i) facilitates the resonance assignment process as it reduces signal overlap in homonuclear 13C-spectra and (ii) possibly improves the signal-to-noise ratio through multiplet collapse. It can be applied in any 13C-detected experiment.  相似文献   

17.
Yang Y  Zhang F  Zhao M  An L  Zhang L  Chen N 《Plant cell reports》2007,26(2):229-235
The plasma membrane (PM) vesicles from Populus euphratica (P. euphratica) callus were isolated to investigate the properties of the PM H+-ATPase. An enrichment of sealed and oriented right-side-out PM vesicles was demonstrated by measurement of the purity and orientation of membrane vesicles in the upper phase fraction. Analysis of pH optimum, temperature effects and kinetic properties showed that the properties of the PM H+-ATPase from woody plant P. euphratica callus were consistent with those from herbaceous species. Application of various thiol reagents to the reaction revealed that reduced thiol groups were essential to maintain the PM H+-ATPase activity. In addition, there was increased H+-ATPase activity in the PM vesicles when callus was exposed to NaCl. Western blotting analysis demonstrated an enhancement of H+-ATPase content in NaCl-treated P. euphratica callus compared with the control.  相似文献   

18.
Magnesium sulfate is widely used to prevent seizures in pregnant women with hypertension. The aim of this study was to examine the inhibitory mechanisms of magnesium sulfate in platelet aggregation in vitro. In this study, magnesium sulfate concentration-dependently (0.6–3.0 mM) inhibited platelet aggregation in human platelets stimulated by agonists. Magnesium sulfate (1.5 and 3.0 mM) also concentration-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by thrombin. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12-13-dibutyrate (PDBu, 50 nM). This phosphorylation was markedly inhibited by magnesium sulfate (3.0 mM). Magnesium sulfate (1.5 and 3.0 mM) further inhibited PDBu-stimulated platelet aggregation in human platelets. The thrombin-evoked increase in pHi was markedly inhibited in the presence of magnesium sulfate (3.0 mM). In conclusion, these results indicate that the antiplatelet activity of magnesium sulfate may be involved in the following two pathways: (1) Magnesium sulfate may inhibit the activation of protein kinase C, followed by inhibition of phosphoinositide breakdown and intracellular Ca+2 mobilization, thereby leading to inhibition of the phosphorylation of P47. (2) On the other hand, magnesium sulfate inhibits the Na+/H+ exchanger, leading to reduced intracellular Ca+2 mobilization, and ultimately to inhibition of platelet aggregation and the ATP-release reaction.  相似文献   

19.
The lobster (Homarus americanus) hepato-pancreatic epithelial baso-lateral cell membrane possesses three transport proteins that transfer calcium between the cytoplasm and hemolymph: an ATP-dependent calcium ATPase, a sodium-calcium exchanger, and a verapamil-sensitive cation channel. We used standard centrifugation methods to prepare purified hepato-pancreatic baso-lateral membrane vesicles and a rapid filtration procedure to investigate whether 65Zn2+ transfer across this epithelial cell border occurs by any of these previously described transporters for calcium. Baso-lateral membrane vesicles were osmotically reactive and exhibited a time course of uptake that was linear for 10–15 s and approached equilibrium by 120 s. In the absence of sodium, 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed the Michaelis-Menten equation for carrier transport. This carrier transport was stimulated by the addition of 150 M ATP (increase in Km and Jmax) and inhibited by the simultaneous presence of 150 mol l–1 ATP+250 mol l–1 vanadate (decrease in both Km and Jmax). In the absence of ATP, 65Zn2+ influx was a sigmoidal function of preloaded vesicular sodium concentration (0, 5, 10, 20, 30, 45, and 75 mmol l–1) and exhibited a Hill Coefficient of 4.03±1.14, consistent with the exchange of 3 Na+/1Zn2+. Using Dixon analysis, calcium was shown to be a competitive inhibitor of baso-lateral membrane vesicle 65Zn2+ influx by both the ATP-dependent (Ki=205 nmol l–1 Ca2+) and sodium-dependent (Ki=2.47 mol l–1 Ca2+) transport processes. These results suggest that zinc transport across the lobster hepato-pancreatic baso-lateral membrane largely occurred by the ATP-dependent calcium ATPase and sodium-calcium exchanger carrier proteins.Communicated by: I.D. Hume  相似文献   

20.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号